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work performed under the current effort, and presents our general conclusions .F

Section 2 descrIbe s some of the fundamenta l concepts underlying message text
analysis. It discusses the structure of event reports as viewed from four
different perspectives ; develops the concept of an “event’ , which emerges as
the logical unit of analysis and becomes the basis for describing Intelligence
information ; and presents the “template ” as an event—centered info rmation
structure.

Section 3 describes the design and implementation of the Event Representation
Language (ERL), which is centered around the notion of “template ” and embodies H
both the declarative and procedural knowledge requisite for the complete
representation of events and their properties. ERL is embedded in the program-
ming language Prolog , an interactive programing language based upon a simple
proof procedure involving a subset of classical logic. The method of encoding
templates in Prolog is discussed In detail. This is followed by an explanation
of the ERL procedures developed for Event Record Synthesis , and a detailed
example of how ERL template representations accomplish the semantic interpre-
tation process , that maps the syntactic structures outpu t by the parser onto
event records.

Section 4 comprises an overview of MATRES II , which is implemented on the
POP 11/45 under RSX-11D. The base language for all the programs -- except
the ERL compiler -— is Forth. The ERL Compiler is coded in SPITBOL , a dialect
of SNOBAL 4, which was chosen because of its excellent facilities for
compiler writing. 

V
Part II of the report presents a detailed description of the imple m entation of
MATRES II. Its data structures and algorithms for the sentence input and
gramma r processing vocabulary and the capabilities in the area of m orphology
are described . The Implementation of the ERL evaluation process , including
the abstract machine which is the target language of ERL , is described in
Section 4. The ERL Compiler , which is the only non—Forth m odule , is discussed
In Section 5. L
A suppl ementary report not for publication Is on file.
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EVALUATI ON

The ma in objective of the work described in this report was to develop a

computer—base d technology which would substantially assist the I&W

analyst in rev iewing and processing the contents of large volumes of

message traffic.

In particular , this effort focuses on providing a detailed conceptual

and methodological framework for an advanced event processing system 
V

designed with the aim of distilling significant information elements

from the narrative text of intelligence messages and synthesizing fixed—

format, problem—oriented information structures in support of I&W data

base generat ion and update functions. These information structu res

present information to the analyst in a compact and usabl e format thus

reducing his burden arid making it easier for him to concentrate on

higher —level analytical activities. Specifically, the work described

addresses the issues involved in synthesizing meaning representations

from a particular class of intel l igence messages constituting reports H
related to the air activities domain , used by the advanced Indicator

System (AIS) at the NMIC.

The task of teaching a computer to “understand” language and identify

relevant information elements is not a trivial one . It requires the

utilization et advanced technologies involving formal syntactic and

semantic analyses of the sentences of a text, and the development of

techniques for synthesizing appropriate mean ing representations in the

form of machine-processabl e information records.

vi



4 system —— desi gnated as a Messa ge Th~ l yzer Testbed and Results Evaluation

System (MATRES) — —  is presenteu ‘ the for m of three ;djor components:

(1) The Lexical Unit Recognizer , (2) T~ e Aug rmented Trans ition Network H

Parser , and (3) The Event Representation Language Machine. Taken

togethe r , these cor ponents analyze incoming t ex t u .~l reports of events

and , f rom t~ier~i , s y n t h e s i z e  “e v e n t  record s ” ( i .e . ,  ex t rac t  re levant

information and store it in event—centered information structure s utili-

zable as data base records).  The tech nique emp loys frdme —l ike “e v e n t

templates ” for representing general knowl edge about event classes.

These are essent ial l y intensional descri ptions of events and , as embedded

in the system , they behave as a~ t ive data structures which dr ive the

synthesis process. The system , as currently conceiv e d , provides an

adequate conceptual bas is  for a genera ifred text VV un ders tandi llg ul system

capable of dealin g with intelli gence reports describing events involv ing

movements and activities of objects compa rable to aircraft (i.e., missiles ,

sa tell it es , ships , su bma ri nes , etc.).

One of the notable features of the system is the use of the proyra~u~iny

lan guage Prolog , a formal isn based upon a subset of classical log ic ,

which lends itse lf particularly well to tr ie encodin g of the log i cal

argument structure of event description s . Recent inve stigations reported

in the literature show that Prolog is not onl y used for the grammatical

description of structures and processes of natural language , t’ut can also

he used as a practical tool and a unif ying principal for the description

and mani pul at ion of data bases . The use of rrnlog, therefore , deserves at-

tention In any further inv e stinat lon related to automated data base generation .

v i i  
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_ _  _________________

In concl u s i on , the approach taken in this investi gation is a significant

step in providing a framework for a system whose main purpose is to map

narrativ e text into information on structures in support of I&W functions.

~~ . - ( .~~~~~~. -

AN DRE W S. KOZAK
Project Enginee r
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1.0 Introduction and Summary
1.1 Introduction

This report describes an RADC sponsored contractual effort related to the devnl~prne,it
of automated analytical tools iii support of the l&W analyst.

The task of an intelligence analyst is to predict the future on the basis of information
describing what has happened in the past and what events are currently taking place .
The basic information source for most analysts Is intelligence messages , which come in
large volumes from many different originators, largely in the form of narrative tcxt .
The questions the analyst asks himself are: “What is happening?” “What does it ‘,mean in
terms of my knowledge about similar events in the past?” , “What is j lnj to liuppen
next?” He is concerned with certain states of affairs , and events signifying cildnges iii
these states of affairs. His evaluations of incoming information are based on his cogril-
tive models of such states of affairs , the personalities, entities, and processes involved,
and the potentialities and constraints associated with changes in an existing state of
affairs.

Given the volume of information he must sift , and the complexity of the cognitive models
involved, the difficulties of the analyst’s task are obvious. Aids to support his anal ,’tica i
processes clearly must Involve means for distilling the content of incom ing information
into a form which is compact , usable, and compaiibie with his view of the woild.

The work described here Is concerned mainly with the development of a technology for
the automated analysis of unformatted (free-text) with the am of transform ing it into
fixed-format , problem-oriented records , reflecting its information content. The subject
domain under investlgaton Is that of air activities.

When reviewing narrative text , the human analyst uses his innate knowledge of English
grammar , as well as his extra-linguistic knowledge of entities such as aircraft , time ,
location, and actions -- including all the relevant concepts which can be attributed to or
are Implied by such entities -- and extracts those information items which ere relevant
to his task.

In order to model this human cognitive activity, the computer must be equipped with
representations of both linguistic and extra-linguistic knowledge, and a means of mani-
pulating such representations for the analysis of text and synthesis of information ele-
ments. The elements must then be presented in a clear and useful format suitable for
the task at hand.

The approach adopted by OSI is based upon current advances in language “understand-
ing” by computer , as exemplified by work in Computational Linguistics , Artif icial intelii-

4 gence, Cognitive Psychology, and non-numeric programming technology. A survey of the
field as related to the work reported here can be found in Silva and Montgomery (1978).
BrIefly, OSl’s approach to the problem combines a “bottom-up” data-driven analys s
based upon linguistic and logical principles with a “top- down” conceptually driven
domain-specific interpretation of the structures generated by the input an~ lysis. The
“bottom-up” analysis is carried out by an augmented transition network (ATN) parser ,
which uses a dictionary and a grammar of the reporting language to produce a perse
tree showing the constituent structures of the Input string and their hierarchical rela-
tionships. The Interpretive procedures are embedded in the Event Representation
Language (t flI ), which uses domain-specific knowledge stored in permanent data

1— I
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structures called “templates ” to transform the linguistic structures generated by the
parser into template-derIved content representations.

1.2 Summary

ThIs final report presents the results of the exploratory and developmental work per-
formed under this contract. Briefly, the work Involved extensions and additions to the
simple ATN grammar constructed under a previous contract to accept a wider range of
linguistic structures; the refinement of the notion of “template ” as a data structure for
the representation of knowledge about events ; the design and implementation of the
Event Representation Language, a language written to explore the use of the “template”
as a knowledge representation technique with whIch to build systems for automated
language analysis; and finally, the construction and Implementation of algorithms for the
automated analysis of narrative text and its subsequent transformation into formal con-
tent representations.

A major effort was devoted to the implementation of MATRES II, the OSI message text
analysis system, which incorporates the technologies mentioned above, and Involves the
abIlIty to digest narrative text and systematically transform it into concise, machine
processable content representations, called ‘event records’, in which a message can be
viewed from several perspectives: time, location, organization Involved, activity type,
etc.

Table 1-1 shows an input sentence and the corresponding event record produced by
MATRES II.

The report is divided into two major parts. Part I deals with system design, while Part ii
describes the implementation of MATRES II.

SectIon 2 of Part I describes some of the fundamental concepts underlying message
text analysis. Section 2.1 describes the structure of event reports viewed from dif-
ferent perspectives. Four levels of description are distinguished, each corresponding to
a major processing phase.

in Section 2.2, the ‘event’ emerges as the logical unit of analysis and becomes the
basis for describing Intelligence information. Events have a complex Internal structure
and raise special representational issues. OSI has given particular consideration to this
question and has developed an event-centered Information structure called a “tem-
plate”, which lends itself particularly well to the description of events and their associ-
ated concepts. In Section 2.3, the template Is first described from the point of view of
the user, stressing those properties which render it particularly useful as an analytical
aid. This is followed by a description of the Internal structure of the template.

Section 3 describes the design and implementation of the Event Representation
Language, which Is centered around the notion of “template” and embodies both the
aeclarative and procedural knowledge requisite for the complete representation of
events and their properties. It has the additional advantage of being readily pracessable
by computer.

ERL is embedded In the programming language Prolog, an interactive programming
language based upon a simple proof procedure involving a subset of classical logic. We
were fortunate to discover this language at a time when we were searching for a qood
representation for the template concepts that we were developing in an intuitive and
Informal way. Prolog gave us not only a natural and perspicuous notatIon for the uniform
representation of the template concepts, but also provided a feasible and fairly etficlent

1-2 
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Table 1-1 Example Input and Output by MATRES II
+ - -. . +

I Input I

I TWO UGANDAN AIRCRAFT FROM REGIMENT A 1313 AT ENTEBIE I
I DEPLOYED TO GULU AT 0200Z ON 21 FEBRUARY. I
+ - - 4

4 +

Output

Even t: DEPLOY
Object:

Equ ipnient= UGANDAN ACFT
.Nati onality= UG A N D AN
Subordjnatjon= FROM REGIMEN T ;\313
Staging base= AT ENT E BB E
Number~ TWO

Destlnation= TO GULU
Tlee r AT 0200Z
Dater ON 21 FEBRUARY
EVENT RECORD COMPLETE. 

+

Section 3.2 illustrates the method of encoding templates in Prolog. This is followed by
an explanation of the FRI procedures developed for Event Record Synthesis (3.3), and a
detailed example of how ERL template representations accompl’sh the semantic
interpretation process, whIch maps the syntactic structures output by the parser onto
event records (3.4).

Section 4 comprIses a brIef overview of MATRES II, a description of the scope at the
linguistic grammar and lexicon developed for the aircraft domain, a description of the
MATRES II parser, and a discussion of some fundamental issues underlying the selection
of template descriptors for a particular subject domain. It concludes with the list of the
descrIptors so far Identified for the air activities domain.

MATRES Il ls implemented on the POP 11 /45 under RSX- 1 1D. Ihe base languaqe for all
the programs -- except the FRI compI~~r -- is Forth. The L HL compiler ~s ~:odt ’d in SF’il -
BOL, a dIalect of SNOBOL 4, which was chosen because of ~ts exco(l ’nt f~~cit~ties for
complIer writing.

Part II of the report presents a description of the implementation of MATRI- S II. Section
2 of Part Ii describes the data structures and algorithms for the sentence input and
grammar processing vocabulary; this vocabulary is essentially an extensive motiif cat ion
of the MATRES I s~stoni. Section 3 describes the capabilities added in the ~‘ r rn of iflor-
phology. The implementation of the FRI evaluation process , including the zihstract
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machine which Is the target language of ERL, is described in Section 4. The ERL com-
piler, which Is the only non-Forth module, Is discussed In SectIon 5. The last three sub-
eactions are intended as a guide ~o the Forth program files listed In Appendix A, and pro-
vide glossaries of the Words In those files.
Appendices A-G contain program listings of all the MATRES II modules (A), an Introduction
to the programmIng language Prolog (13), a listing of the aircraft domain lexicon (C), a list-
Ing of the current version of the ATN grammar (0), a sample listing of sentences now
parsed by the MATRES II System (E), a set of examples of system Input/output (F), and
operating instructions for MATRES II at OSI(G).
1.3 ConclusIons

The method of approach which OSl has adopted since the inception of the RADC Explora-
tory and Developmental program for Automated Data Base Generation has been to look
ahead to the potential capabilities of a future system for both interactive and fully
automated exploitation of the narrative text of Intelligence messages , and to develop a
methodology that will remain valid for applications of considerably greater scope than
the one currently under development.
Although MATRES Il ls at an early stage of development, It has demonstrated that OSl ’s
Initial design concept was sound, and can eventually be developed into a useful opera-
tional tool in support of l&W functIons. The concepts underlying Its design and Imple-
mentatIons appear so useful , that the system has already aroused considerable Interest
both within and outside the intelligence community.
One of the noteworthy features of MATRES Il ls its modular design, which has greatly
facilitated its implementation. In spite of its complexity, MATRES Il was written by a sin-
gle programmer working only half-time In about one year.
There are two aspects of MATRES II as a language 1’understanding” system that make it
somewhat unusual, and thus deserve particular mention: fIrst, It operates on a 16-bit
minIcomputer, wIthin a quite limited amount of available memory (64K bytes); second, it is
written not In one of the popular Al extensions to LISP, but in Forth, a language desIgned
for use on small minicomputers which combines a low-level, machine-oriented semantics
with a natural facility for extension of the semantics In a user-defined way. It was
basically those combined properties of Forth, together with Its fairly simple “virtual
memory” facilIty, that has made It possible to Implement such a structurally complex
application on a small machIne in a relatIvely short time. As it currently exists , the
MATRES II system fills the available memory wIth only a small amount of dynamIc space
available for sentence processing; this can be ameliorated with a modest amount of
work, at the cost of noticeably slowing the processing due to virtual memory I/O.
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2.0 Message Text Analysis: Fundamental Concepts

in thIs section we explicate some fundamental concepts related to niessag text
analysis. We begin by a formal description of event reports , which constitute the primary
data of our analysis programs. Next , we consider the notion of ‘event ’, which ernernes
as the primary unit of analysis, and becomes the basis for ttle design of t h e  Event
Representation Language described in detail in Section 3. Finally, we present the con-
cept of a ‘template ’, first as an analytical aid designed to Support the analyst in his
task, and second, as an information structure which provides an event-centered frame-
work for the uniform and compact description of event data contained in intelligence
messages.

2.1 The Structure of Event Reports

Work under previous contracts has shown that the formal description of event reports
requires a multi-level approach. Four levels have been identified to date , each involving
a different aspect of event reporting, and each based upon different considerations.

2.1.1 The Macro Level. This level of description involves the composition of reports in
terms of individual messages and is based upon operational considerations.

An ‘Event Report ’ is defined as a collection of one or more messages transmitted over a
period of time and dealing with the same event. For example, an event report concern-
ing a specific flight might consist of three messages Ml , M2, and M3. Ml might describe
the flight of some as yet unIdentified aircraft over some general area. A second mes-
sage M2 might request a change of any one of the flight parameters reported in Ml ,
while a third message M3 might be a follow-up, adding new information to the aircraft
first reported as ‘unidentified’.

If all parameters of en event are clear to the observer at the time of reporting, and can
therefore be reported with certainty, the description of the event usually involves only
one message.

From the point of view of automated computer analysis, a distinction must he made
between those messages that contain new event descriptions (i.e., descriptions of
events reported for the first time), and those that either request changes in the param-
eters of some previously reported event , or add information to previously underspecified
parameters. From an operational point of view, a first report involves creating a new
data element , while requests for change and updates involve changes and/or additions
to an already exIsting structure.

Let us call the class of messages that lead to the creation of new data elements class
MO, and those that imply changes to the data base class Ml. The composition of event
reports at this level can now be formalized in the form of a grammar using BNF notation:
(1) <Event Report> -

~ <Message >I <Messagel ist>
<Messagelist> -i <Message> I <Message list>cand><Message >
<Message 4 MO , M l

Work under this contract has focussed mainly on messages of class MO, i.e., reports of
new events. In the next section we examine the structure of such messages from the
point of view of their information content.

2.1.2 The Message Level. This level of description Involves the composition of single
messages In terms of classes of events characteristic of a particular subject domain, in
the following paragraphs we shall be concerned only with messages of class MO.
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Messages can have a complex Internal structure comprising header information, followed
by either formatted, semI-formatted , and/or unformatted (narratIve) text portions ,
before endIng with some special symbols signalling the conclusion of the message.

Since thIs work is concerned mainly with the narrative text portions of messages , we
shall describe the meesages in terms of three components: a ‘pre-text ’ component , the
‘text ’ component, and a ‘post-text ’ component.

The ‘text ’ component of a single class MO message may contain the descrIptIon of one
or more new events. Of course, not everythIng reported In a message text Is a descrlp-
tion of an event. There are also objects , and states , and processes , and perhaps other
entitles. However, events are of fundamental importance and it is expedient to treat
object , state , and process descriptions as special types of events. (For a full discussion
of the concept of an ‘event’ see Section 2.2).

Thus, a message may state that a particular set of aircraft carried out a penetration
flight over some country, and then engaged in some other activity before returning to
homebase. Such a message describes a chain of connected events: a penetration flight ,
followed by an activity, followed by a return to homebase , all involving the same set of
aircraft. The events reported on in a message need not always be connected as
described In the prevIous example. It is quite possible for a message to report on
several seemingly unconnected events.
The content of a message can now be formally characterized in terms of the ‘event ’ as

the primitive unIt:
(2) <Message > -. .Pre~ t e x t >  %Text> < P o s t - t e x t >

lext> -. ~Ev er~t~ ( ..E~en t l t s t ”
Even tlls t > -

~ <Even t> I <Eve nt l1 st~ sand> <Event>
<Event> -+ el ,e2,e3 en

Note that <and> is a symbol of the metalanguage and represents a set of operations and
relations on events , while the set of event classes characteristic of the subject domain
covered by the class of reports ‘Event Report’ defined In (1) above is symbolized by
{el en) .
We shall call (2) the ‘Mess’ ge Grammar ’. It consists of a designated non-terminal <Mes-
sage), called the ‘initial’ symbol, a set of non-terminal symbols Vn, the set of given sym-
bols Vt , called terminals, and the four productions in (2).

Vn = Message, Pre-text , Text , Post-text , Eventllst , Event , and
Vt {el ,e2,e3 en)

The set (el ,e2 en) comprises the ‘prImItives’ of the ‘Message Language ’ described In
(2), and will vary from aubject domain to subject domain.

2.1.3 The Event Level. This level involves the descrIptIon of events In terms of their
properties, including time, location, action, and object(s) involved In the action.

Event descriptions take two forms: Infensiona! descriptions, and ex tensional descrip-
tions.
An Intensional descrIption is an abstract descriptIon of a class of individuals in terms of
a set of invariant properties common to all members of the class. Thus the intenslonal
descrIptIon of the class of flight events would state that all such events are associated
with objects that can fly, have a specific location at some point in time , may involve a
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mission, and can further be specified in terms of path, altitude, direction, and extent of
flight. It would also state any associated inferences , such as , for example , tht~t a flight
event Is necessarily preceded by a take-off event.

An extensional description involves one individual, I.e., a unique member of a class of
Individuals in the world being modeled. A simple example is the description of a specif ic
aircraft (e.g., a MiG-21) flying in a given direction (e.g., north), at a particular time (e.g..
O100Z).

The representational construct developed for the description of events Is the ‘template ’.
it is an abstract data structure containing a collection of Invariant information ref lecting
the analyst ’s view of the concept it describes. All Information represented In templates
is assocIated with rules governIng its use.
The class of Individuals to which an intensional description applies is called the exten
sion of the general concept described by the template. In the context of Event
Language Recognition, descriptions of individual events are called ‘Event Records ’. Thus ,
the set of event records describing events of the same class , i.e., event records related
to a particular template, constitute the extension of the concept described by the tern-
plate.

Section 2.3 gives a general overvIew of the template from the the viewpoint of the user
and stresses those features whIch can serve as an aid to the analyst. This Is followed
by a detailed study of the Internal structure of the template as the fundamental
knowledge structure for the representation of event data. The criteria for the selection
of the descriptors appropriate for a particular subject domain, and the methodology
employed as applied to the aircraft domain are discussed in detail in Section 4.5.

2.1.4 The Linguistic Level. This brings us to the fourth and last level of description dis-
cussed here, namely to the description of the linguistic structure of narrative text.  In
the MATRES II System, the linguistic structure is defined by means of an augmented
transition network grammar in terms of familiar linguistic categories such as sentence ,
nounphrase, verbgroup, prepositional phrase , adverb, and others.

In order to expedite processIng, a number of language specific categories , not usually
found in traditional grammars , were added. Thus , the familiar definition of prepositional
phrase in (a) was augmented to encompass dates (b) and times (c):

(a) pp -, prep + nounphrase
(b) pp -‘ prep + date
(C) pp -, prep + time

where ‘date’ and ‘time’ are non-terminals of the grammar with their own internal struc-
ture. The MATRES II grammar and Its associated lexicon are described In detail in sec-
tion 4.3 of this report.

2.2 The Concept of an Event*
Although the event concept is fundamental in message analysis , no stand,~rdl cd termi-
nology for describing or classifying events exists. Thus, when reference is n’ade to the
parameters of ‘event /tinie/ location,’ the event concept used is that of a type of

* This concept was originally developed in Kuhns , et al. (1975) under a previous RADC
contract.
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activity. In another usage ‘event ’ refers to a fact. The event concept in physics Is that
of a point in the spacetime continuum, and In mathematical statIstics the word ‘event ’
has the broadest mean ing , that of any proposition, whether true or not. The event con-
cept has even been taken as a primit ive (i.e., as undefined) and then used to define the
series of time points (Weiner 1914; Russell 1956).

To deal with event reports it was necessary to define a ‘data semantics ’ snd a
corresponding Event Representation language which, as the name implies , Is a special
language for the description of events and event-related concepts , such as objects ,
processes, and other entitles. This langu age also has the desirable feature of being
representable in an appropriate formalism (see Section 3), which is amenable to corn-
puter processing. This language guides the mapping process which converts narrative
text into formatted event records (see Section 3.4).

By an event we mean roughly either the property that an object has at a point in time or
over a time interval, or a relation that holds among a set of objects or locations at a
point In time or over a time interval.

Events may be gathered into certain event classes called activities , e.g., air activities ,
submarine activities , and ground activit ies. These are characterized as involving certain
types of objects or properties or relations.

We give a classification of events based on considerations Involving sources of reports , ~. 
-

observers of events , and relations and properties Involved In events. Time points are
the central element of an event. A discussion of tIme data as it occurs in natural
language is given in Kuhns and Montgomery (1973) and Kuhns (1975).

The most complicated examples arise in messages containing narrative text.  ihese
Illustrate the variety of problems that arise in defining events and the necessity for
their classification. One example Is:

A reliable source reported that water tankers
accompanied by trucks carryIng what appears to
be ... have been observed stopping ... . This
could indicate that ... .

The initial analysis of the first sentence shows that this involves four levels of events.
There is first the fact that water tankers wore accompanied by trucks , etc.; there Is
second, the obs t ’rvdtion of the fact~ third, there is the report of the observation (i .e .,  via
the referenced source); and finally, there Is the message itself which is a report of a
report. To distinquish these levels , we introduce the notion of a mets-event.

We define a mets-event to he a report of an event. There are two sorts of events
other than mete-events: an obsetva(ional event which Is a direct perception of an event
(often indicated as a visual perception, e.g., ‘observe,’ ‘sight ’; an electronIc perception,
e.g.. ‘contact ’; or a term ambiguous as to the nature of the contact , e.g., ‘identify,’
‘detect ’);* and a primit iv e event which does not Involve an observation. ihe  mets-
events themselves Ll tP  distinguished by orders. A mets-event that reports on an obser-
vational or primitive event is a f i r s t  order mets-event.

A mets-event that reports on oth order meta-events is an (n+1)th order mets-event.
Thus the previous example message Is a second order mets-event reporting a first order

* A special case of an observat/onal event Is a designation event where a special
proper name for an object is introduced, e q., ‘an aircraft , designated as MiG-~~1 ,...’



_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _

meta-event consisting of an observational event of a primitive event.

A similar analysis can be given for the exanipie:

It is reported that two Ugandan F class fighter a ircratt
were sighted in the vicinity of 0200S.42301 a t
Oll200 hours.

Here, the originator of the message uses a passive sentence construction rath er thaii
stating the source of the report. This too is a second order mets-event dt ’scribt ng a
first order mets-event describing an observational event of a primItive event.

The mets-events can be considered to convey certaIn pragmatic Information that is of
Importance to the intelligence analyst. The most Important aspect of this pragmLltic
Information relates to the credibility of the eve;it data beIng reported. Other aspects
are fact of the message transmittal itse lf , the time and origin of transmittal . etc. The
decision making function related to the pragmatic Information involved is one of feed-
back , just as for other sensors : to reorient the data collection, to suspend It , or amplify
It.

Since a message is itself a report of an event , it is a first order mets-event.

A further breakdown Is used for primitive events. We distinguish two kinds. Au attr, t ’ u
five event gives a situation where a particular obJect* or object of a certain type has a
certain attribute (other than spatial location), which may be inherent or tempora lly coil-
straIned: I.e., the attribute Is true at a certain time , or in a certain time interval.
Thus, the example:

the aircraft is V-cl ass

is an attributive event. In the notation of the predicate calculus an attributive event is
symbolized as:

P(x ,t) (1)

where x is the object argument , t Is the time argument and P Is the attribute that x has
at time t.

The argument-expression ‘x ’ can have a variety of forms through which additional pro-
perties of the object can ho expressed -- chiefly through the use o’ descr irt lvo
phrases.

The second kind of primitive event is called a ,eiat,onal event. This is a situation whu’te
n objects or an object and a location stand in some relation to each other at a certain
time. PosItion data may be absent , b u t  when it  occurs with  one object—ar gument , then
the relational event gives either the location relation holding between an object and its
position at a certain time (e.g.. the primitive event described in the second example) or
some other relation between n objects(o.q.. ‘the aircraft entered Riatran air space ’).

A relational event is symbolized as:
R(x l xn,t)

* Objects are taken In the broadest sense and Include cultural objec ts (such as
governments , InstitutIons, etc.), and psychological objects (perceptions , attitudes ,
etc.).
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where x l xn are object or location arguments , and t Is the time argument. Among the
relational events Is a class of special Interest -- these are events giving a world point
of an object , i.e . , its space-time coordinates. Such an event is called a location eve ’it ,
or world point event.

Thus, the (rac A of an a i r c r af t ,  which consists of a set of world points , is a portion of its
world line. For a location event , the expression (2) then takes the form:

L(x ,p,t) (3)

where p is the location argument.

Another class of relational events Is given by a generalization of (3). These we call
world point qualifications or location-event-qua/if ications. Such an event is a two-place
relation (other than location) between an object and a location that holds at a certain
time. Thus, the relation stipulates the activity of an object at a certain point and time,
e.g., an aircraft flying south in the vicinity of ... at ... . in symbols this is expressed as:

Q(x ,p, t) (4)

where Q Is the activity engaged in by x at the space-time point (p,t).
in an event record we can consider the world point of an object to be a property of the
object. ihIs property can be def it~ed formally through use of the X-operator which Is
used in logic to introduce new predicates (i.e., names of attributes or relations). Thus,
the world point property corresponding to (3) Is written SS:

P ( Xx ) L(x,p,t) (5)
or as coordinates:

(p,t) = (Xx) L(x ,p,t) (8)

For example , in the second example above:
(p,t) (in the vicinity of 0200S 3230E, 011200)

Similarly, a world point qualification can be expressed as a triple giving the space-time
point of the object and its attr ibute. For this we write:

(p,t ,Q) = (Xx ) Q(x ,p,t) (7)

An example of a world point qualification would be:

(p.t ,C) (0200S 32301,011200, movIng not at all)
In all these formulations , we are treating the time arguments on a logically different level
trom the object and location arguments. The reason for this is that time arguments
always occur in event formulations (even though sometimes only implicitly) while other
arguments need not occur.

If an event Involves two or more objects or locatIons It is called simply a non-world point
event , because It is not uniquely classified by object and location. However , many such
events can be reduced into world point events or qualifications. For example, ‘John met
Mary at ...

‘ can be reduced by use of the X-operator) to either a property of John (and
hence a world point qualification event) or a property of Mary (similarly). Also , for exam-
ple. ‘The aircraft flew from London to Paris ’ splits Into two world point events for the
same object -- a departure at london and a (later) arrival at Paris.
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A summary of the classification of events Is given in Table 2-1.

In the symbolism above, we have broken a primitive event into object , location, and

time-arguments and relations and properties. Indeed, every situation can be so
analyzed. This has been referred to in the literature as thing-splitting [Reichenbach,
1947]. It is often more natural to introduce events themselves as arguments -- for
example, in the analysis of mets-events or observational events. Thus , a rneta-event
can be symbolized as:

R(s,e,t) (8)

which describes a report of e by source s at time t.

Similarly an observational event Is:
O(x,e,t) (9)

which describes the observation of e by the observer x at time t.

Table 2-1. Classification of Events
+ +

I I
I Meta—events I . -
I Non—meta events I
I Observational events I
I Primitive events I
I Attributive events I

Relational events I
I World point events (location events) I

World point qualification events
I (location event qualifications ) I
I Non-world point events, or events involving
I two or more objects or locations 

The Introduction of events (even those corresponding to primitive events) as arguments
In situations can be achieved by certain symbolic devices. This is called event-splitting
(Reichenbach,1947), i.e., the situation is ‘split’ conceptually into an event-argument and
an event property. Language has various devices for event-splitting, the chief one
beIng nominalization, e.g., ‘arrival,’ and the use of the word ‘that’ which flags an event-
argument.*

Primitive events can be further concatenated into event chains which are a sequence of
minor events giving an initiation, continuation, or termination of certain major events. For
example, the major events of aircraft penetration could include such minor events as the
initial penetration of airspace, the reaction, and a termination such as the departure or
destruction of the aircraft. Observational events can also be gathered into event
chains. Establishing, maintaining, losing, and regaining contact with an aircraft provides
en example of this. Another use of event chains is the monitoring of minor events to
forecast major events. The definition of interval events , i.e., activities which continue
over an interval of time (as opposed to point events), can be accomplished by reducing
them to point events. This is accomplished by defining an event type, such as flying,

* A formal method for introducing event arguments is described in i(uhns (1975).
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and then stating that an event of this type occurred at every point in a time interval. In
English, Interval events are usually associated with the progressive tenses. (Verb
tenses furnish important implicit time data of a relative nature (Kuhns and Montgomery
(1973) and Kuhns (1974).

While an observational event involves the perceptional facility of an observer , there are
other events involving the evaluative facility of an observer , source, or person. These
are events dealing with ~ippr~iisals of an object property, a truth value for occurrence of
an event , and a degree of belie f in an event. An example is given by the first message
sentence (above). Thus , the phrase ‘what appears to be’ flags the evaluation of an
object-property.

The phrase beg inning the second sentence ‘T his could indicate that’ flags a hypothetical
event , I.e., one that is not asse~ted as occurring but only as possIble or predicated.
Similarly, the phrase ‘a reliable source ’ is an evaluative component of the message. !t
would seem that t i i osc  evaluations should be distinguished from affirmative or direct
assertions such as ‘determined to be ,’ ‘confir med to be ,’ ‘the previous report is errone-
ous ’ even though these can be considered as extreme cases of evaluations, just as any
report can be so considered. We can say that an e~ialuative component of an event , or
an evaluative event itself (e.g., this could indicate that ...), Is one that expresses the
reporters subjective judgment of the information conveyed. These notions are tentative
and should be subject to further study. For the time being, we class an evaluative
event as a specIal kind of ineta-event. it seems that an evaluative component of an
event , such as the appraisal of an object-property, can be analyzed as the conjunction
of an evaluative event and a primitive event , and that this approach can be consistently
carried th ough.

2.3 The Concept of a Template

In this section the concept of a template is explicated from two poInts of view. First , the
focus is on those properties which render It particularly useful as an analytical tool;
then , the focus shifts to its internal organization as a knowledge structure for the
representation of event data.

2.3. 1 The Template as an Analytical Tool. In this section we present a general view of
the template as an information structure for the description of event data with particular
emphasis on those features that render it useful to the analyst in his task.

The template as the basic knowledge structure for the compact and uniform representa-
tion of information on entities and events described in intelligence messages provides
the means of coding the analyst’s cognitive models in terms of logical data structures
which are susceptible to automated processIng.

An event template Is composed of a set of information parameters or descriptors which
represent the type of in f ormat ion  that answers the set of questions shown in Table 2-2,
which also illustrates the c orresponding descr iptors of a prototype template.

This Is somewhat of an oversimplification of the template concept for convenience of
presentation , since complex descriptors within the template are actually represented by
pointers to other types of templates: e.g., object templates. Thus for the message
given in example a), an object template reflecting an aircraft description is essentially
embedded in the event descript ion by a pointer reference , as shown In Table 2-3:
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TABLE 2—2. InformatIon Parameters of a Prototype 1 r’mplato

QUESTION DESCRIPTOR - IXAMI~L I

what event type airspace

who agent (or object a Uqandan MIG- ’l
plus owner)

when time of event at 02351 ~~~~~ April l9e ’3

where location of (
~ miles from the Kenya

event occurrence border n ear Suam

to whom patient , or enti ty probable reconnaissance
affected by th~ event mission 

- - - j
(a) TWO SAAF CAPETOWN-BASE I) SAG2~ ACF 1 Aft - OPI HA l lN~ OVER T H E

INDIAN OCEAN.

it is interesting to note that message a) is incomplete in terms of the prototype teniplate
specificatioi outlined in Table 2~~~. Conspicuously absent is a time desc riptor. *
For the formal description of the event in (a) to he comple te , a tim , ’ descriptor element
must be satisfied. The absence of this element can be signalle~t to the analyst to indi-
cate that this element must be supplied for the information representation to be com-
plete. Thus , intra -template relations -- the set of relations connecting descriptors
within a template -- provide an important means of alerting analysts to the missing infor-
mation elements in data structures constituting subparts of the network of templates
which represents an analyst ’s cognitive model of a s ta te-o f -a f fa i rs .

Another set of relations which can be very useful to the analyst are relations between
templates, or inter -template relations.

For example , an aircraft cannot fly unless it has taken of t , cannot  ~md unless it has
been f lying, must be in flight if it has taken off and has not landed or been destroyed.
Thus a TAKE-OFF is a template which represents a necessary pr ’ h’~ e~ ser n’ v ’ i i t  to a
FLIGHT event. On the other hand, a lAND event s a possible , but not obliqateny succes-
sor to a FLIGHT event , for the object involved in the flight may havi ’ changed course , or
may have been destroyed before landing.

Inter—template relations predict the normal , expected , ordering of eve nts in the a r
activities world. Any violation of these expectations can serve as a \~~ncning to the
analyst that some external force has altered the predicted course of events. It is
therefore important that the analyst be alerted to any deviation from the expected.

* Also a separate template because of the complexity of most time descr i ptors , wh ich

are derived only partially from explicitly stated times as in the lable ~ ‘
-
~~~~ example ;

they must often be reconstructed from the tense of the internal verbs, time
operators such as ‘currently’, which point to information in the message header oi

the textual context of the time referent , and the internal structure of a time
descri ptor , which may read ‘at 10 minute interva ls for a period of h hours ’.
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Table 2-3 Content Representation for Sentence (a).
+ - - - - - - - . - - - - - - 4-

1 E\EN1’ DESCR J PTIJN I

I UNIT REPi~~~~\TED: FV~ \T I
I E\ E\~ T’iJ’E: BE A C T I V E

I OB.JE~’T:- - — - -- - - - - — — - +

I RE ~~ ON : THE i N D i A N  OCF. ’~\
I I
I I I
I I

I - + I
I I  I
I I  I I
I I AIRCRAFT DESCRIPTION I
I I I

I U N I T  R E P E E ~ E \ ;L :  OBJECT I
I OBJ ECT T~PE: A IRCRAF T I

I I  I
I I TYPE: SAÔ,~2 I
I I S U B O R D I N A T I O N :  SOUTH A F R I C A N  FLEET A I R  FORCE I I

I BASE: CAFETO’i~’N-BASED
I SET SP F i ’~F I C A T T O \ :  T~

.O I I
i i  I I
I + - - - - - - - - - -  + I

4— - - - .- - - - — - - .. +

Accordingly, the explicated network of inter template relations , both obligatory and
optional, provides an additional means of alerting the analyst to the implications of an
even t , as well as to rc!~nted events which may furnish data elements missing in the tem-
plate currentl y being processed.

In summary, the applic~it ion of template technology to the analysis of narrative text can
provide an important analytical aid from the foliow~;ig five points of view:

• Templ i t -~ cnnst i tute a ~~~~‘ ‘rf i i l  means for distilling the content of verbose tex-
tual messages into a comp~nct format.

• I ei~n ‘ . .tes are logical information structures which can be used to represent the
analyst ’s cognItive models of events and states of affairs.

• inter and Intra temp late relations can assist the analyst in recognizing missing
elements of information and predicting future events.
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• Templates provIde a discrete representation of an event which lends itself readily
to statistical analysis, as in indicatIons monitoring applications for l&W.

• Event data avaIlable from the TIME and LOCATION descriptors of templates can be
exploited to drive automatic plotting of ship, submarine, and aircraft tracks.

2.3.2 The Internal Structure of the Template.

Information contained in templates is of two types: declarative information and pro-
cedural information. We begin our discussion with a preliminary specification of the
declarative elements of the template and the relations between those elements. Next,
we present the procedural components of the template and consider the operations they
perform.

2.3.2.1 Structure of the Template: Descriptive Elements Essentially, a template is a
data structure which has a unique “name” and an ordered set of “slots ” filled by
“descriptors ”. Template “names ” serve as identifiers and refer to the entity described
by the template. Examples of template names in the air activities domain are: BE
ACTIVE, FLY, DEPLOY, ARRIVE , AIRCRAFT , and DTG (date-time group).
The substructure of a template and its relations to other templates is defined in its
descriptor slots. Descriptors bear special meaning relations to the central concept.
Each descriptor slot names some property of that concept. For example , most event
templates involve the descriptor slot “Object” , which names the relation of the entity
which fills this slot to the event. In general, descriptors are of several types. Some
may assign an object to membership in a category (such as “is an aircraft”); others may . 

-~

state an object’s functional role in a complex event (the “Source” of a particular flight);
yet others may express the time and place of an event (“at 011 5Z” ; “along the River
Kwai”).
Each descriptor slot has a name which is unique within the template. Associated with
each descriptor slot is a set of one or more statements which constrain what may “fill”
the corresponding slot in the representation of an individual entity. These statements
will be referred to as “filler specifications”. Filler specifications then, give linguistic
Information, I.e., they specify how a particular descriptor can be realized in the sub-
language. A filler specification Indicates the possible deep-structure syntactic environ-
ments for a given descriptor as well as the properties of the items to which the rules
which map syntactic trees onto meanIng representations are sensitive. Thus, the
description associated with the ‘Object’ descriptor in the DEPLOY template for the air
activities domain, would specify that the object is normally an aircraft. In the descrip-
tion of an individual event of the DEPLOY class , this is further specified as some specific
aircraft, (e.g., a Nairobi-based F-4 Phantom fighter). The descriptors associated with
the DTG template, on the other hand, specify the permitted range of values for its com-
ponents (See Table 2-4). For example, the day in a particular month must lie within the
lower limit of 1 and an upper limit equal to the length of the corresponding month. A day
number of 77 would be outsIde the permissible range of variation for this descriptor. If
such an anomaly is discovered, it must be brought to the attention of the analyst operat-
Ing the system.

Any descrIptor of a template can be defined as a separate template when its internal
description is important to the analyst and is of sufficient complexity to warrant a
separate representation. For instance, the template for the DEPLOY event class incor-
porates a descriptor “Object” , whose attribute , in this template , is “aircraft” . But “air-
craft” In Itself Is a complex notion of l&W ~.ignIficance and is represented by a template
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of Its own (see table 2-3 above).

The template as a unit for representing knowledge , therefore , is complex and extensive.
Rather than being of the order of a single property or relation attributed to the entity
described, It is an n-place hierarchical relational definition of a concept with optional
pointers indicating relations with other templates.

In summary , the descriptive elements Incorporated In a template represent the analyst ’s
knowledge of concepts and their interrelationships in his partIcular task domain.

Table 2-4. Description of the Date-Time Concept (DTG)
+ - - - - — — -- - - — — - - -- - - - 4

I I I
I TEMPLATE NAME I DTG (DATE-TIME GROUP) I

- __ __ i - - - - -  - -- I
I I I
I DESCRIPTOR NAME I FILLER DESCRIPTION I 

L~~~ I
I I
I I
I D a y — n u m b c r  I F i rs t  two digi ts of seven I

• I I character string of forma t I
I I NNNNNNZ. Constraints: I
I I I
I I max day number = Month Length I
I I I
I Z u l u t i m e  I time concatenated with “Z”.
I I
I Time ( Four digit string with I
I I constra ints:
I I
I I 0000 < Time ‘. 2400 I
I I I
I Month I Three character string. I
I I Mem ber of set (Jan, Feb , Mar , I
I I Apr ,May , Jun . Jul , Au g, Sept , I
I I Oc t.Nov,Dec). I
I I I
I Yea r I Two digit string constraints:
I I I
I I 1st ~~~~~ = 7 I

I 2nd dig it 9 I
4 - - -.   4

2.3.?.2 Structure of tim’ romp/ ate: Procedural Components As mentioned previously,
templates are active data structures which Incorporate both declarative and procedural

• knowledge. This section is concerned with the procedural components of templates and
how these are used by the system throughout the process of narrative text analysis.

Procedures are attached to descriptor slots . They are essentially mapping rules which
effect the tra nsformation of parsed sentences Into event records. Procedures carry
out specific computations. Some define the steps involved in finding “fillers” for partic-
ular descriptors , others specif y the operations involved In IdentIfying the referents of

1 - 1 6  
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anaphorlc expressions, while yet others may compute relations between events.
These mapping rules are necessarily language specific. They incorporate the domain-
specific pragmatic knowledge which establishes the link between the abstract descrip-
tion of an event class (the template) and the description of an individual member of that
class (the event record).

The process of “understanding” a sentence consists of an Interaction between the pro-
cedures associated with the descriptor slots of the corresponding template, each of
which actively seeks to satisfy Its own requirements. Essentially this is done by
searching the parse tree for constituents which satisfy the syntactic and semantic con-
strainta on the permissIble fillers for a particular descriptor.
it should be noted here that not all descriptor slots In a template need be filled for any
partIcular input sentence. A template provides slots as placeholders for information that
is consIdered relevant, even though it may not always be present in the input. The
number of slots of any template that will be filled, therefore, depends largely on the
information contaIned In the Input sentence. It Is important to note , however, that , for a
sentence to be considered as “understood”, the following two conditions must be met:

• Every element of the input sentence must be assigned to some descriptor slot;

• All “obligatory” descriptor slots must be filled.

1- 17



3.0 The Event Representation Language

3.1 Introduction
The Event Representation Language (ERL) developed under this contract is an experi- —

mental language especially wrItten to explore the use of “templates ” as a knowledge
representation technique with which to build systems for message text analysIs In sup-
port of I&W functions. The basic data objects of ERL are the templates.

ERL is implemented in a subset of Proiog, an Interactive programming language based
upon a sImple but efficient proof procedure involving a subset of classical logic referred
to as “Definite Clauses ” (van Emden, 1975). The basic computational mechanism of Pro-
log, and therefore of ERL , is a pattern matching process (‘unification’) operating on gen-
eral record structures (‘terms’ of loglc).*
Prolog was Initially developed at the University of Marseilles (Roussel 1975) as a practi-
cal tool for ‘logic programming’ (Kowalski 1974; Colmerauer 1975; van Emden 1975), and
has sInce been used In several other centers (Stanford, Edlnborough) for writing
language analysis systems (Dahl 1977; Warren 1977a , Warren 1977b).

Prolog is a perspicuous and powerful language for the expression of the concepts of our
Event Representation Language, and admits of an effective and reasonably efficient
implementation. Clear , readable, concise programs can be wrItten quickly and with few
errors. Specifically, the following features make it particularly suitable for our purposes:

• Pattern matching (unification) replaces the conventional use of selector and con-
~tructor functions for operating on structured data.

• The arguments of a procedure can serve , not only for It to receive one or more
values as Input, but also for It to return one or more values as output. Procedures
can thus be “multi-output” as well as “multi-input”.

4 • The Input and output arguments of a procedure do not have to be distinguished In
advance, but may vary from one call to another. Procedures can thus be “multi-
purpose”.

• Procedures may generate (via backtracking, In the case of Prolog) a set of alter-
native results. Such procedures are called “non-determinate”. Backtracking
amounts to a high-level form of iteration.

• Procedures may return “incomplete” results, i.e., the term or terms returned as the
result of a procedure may contain variables, which are only filled in later , by calls
to other procedures. The effect is similar to the use of assignment in a conven-
tional language to till in fields of a data structure. Note, however , that there may
be many occurrences of an instantIated variable, and that all of these get filled in
simultaneously (in a single step) when the variable is finally instantiated. Note
also that when two variables are unified together , they become identified as one.

• The effect is as though an Invisible pointer, or reference , linked one variable to
the other. We refer to these related phenomena as the “logIcal variable ”.

• “Program” and “data ” are identical In form. A procedure consisting solely of unit
clauses is closer to ~n array, or table of data , in a conventional language.

* For a full descripti on of the syntax and semantics of Prolog, see
Append ix B.
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SectIon 3.2 shows how Proiog Is used for encoding templates and their associated pro-
cedures. Section 3.3 explains the ERL procedures so far developed for event record
synthesis, while section 3.4 offers a detailed example of how templates written in ERL,
and executed as a Prolog program behave as a semantic interpreter for the syntactic
structures output by the ATN parser.

3.2 How Templates are Expressed In Prolog

in the following paragraphs we describe the formalIsm used for the abstract specifics-
tlon of both the data structures (templates) and the procedures of ERL, and show how
they are expressed in the programming language Prolog.

In ERI, both templates and template slots are encoded as Prolog procedures. A Prolog
procedure consists of a sequence of statements called clauses. A clause comprises a
head and a body. The head corresponds to a procedure call, while the body represents
conditions to be fulfilled for the head to be satisfied. The general format of a Prolog
clause is as follows:

• head:- body.

The head consists of one Prolog goal, while the body may consist of a sequence of one
or more such goals. Goals correspond to Prolog terms, which have the general form:

• functor(argl , arg2 argn)

Templates are encoded as ‘construct ’ clauses. For example, the DEPLOY template, which
Is informally represented In Table 3-1 in a simplified form, is encoded as in Table 3-2.

Table 3-1. Informal Description of the DEPLOY Concept

+ +
I Descriptive Elements II Procedural Elements I
I I I  I
1 I I I
I I I OBL/ II Procedures I
I I I / I l  for I
(Descriptor I Filler Specification $/OPT II filling slots I 

I I I I....__  I
l Object I Logical Subject IOBL II Construct ‘aircraft’ I
I I noun phrase I Ii template from logical I
I I (+acft) I II subject I
— I — I I I I

1 I I II I
IDestinatlonl PP: ‘to ’+ NP (+loc) ~OBL I Search VMODS list
I I I Il for appropriate
I I I IIprepositio nal phrase I
I — I I ~~ I I 
I I I iSSearch VMODS list I

-j lim e I 1. Adv (i. time + ref) I OPT ll for appropriate I
I I 2. PP (durlng, between) I liconstitue nt I
I I + NP (+ time) I II
.4. ~~~~~ +
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Table 3-2. ERL RepresentatIon of DEPLOY Template

- —  4.

I construct(’DEPLOY ’, s(Subj, t-’bg r,Obj,Coinpl ,Vmods), IOB1 ,S1,L2,UTGI):- I
I objecti (Subj, OB1),
I destinationl (Vmods,D1), I
I construct( ’DTG ’,Vmods,DTG).
I I
+ +

The head of the “construct” clause has three arguments: a template name, the name of
the syntactic constituent which serves as the context which is searched in an att empt
to find fillers for the descriptor slots of the template in question, and a third argument
which represents the output of the procedure , ie . ,  the instantiated slots.

The body of the ‘construct ’ clause consists of three ‘goals ’ corresponding to the three
slots of the DEPLOY template shown In Figure 3-2. These three goals are themselves

~~~~~~~~~~ defined as procedures , which seek fillers for the descrIptor slots they represent.

Procedures for fillIng template slots can be obligatory or optional, and are named after
the slot they are designed to fill. Thus, the procedure for filling a ‘destination’ slot Is
called ‘destination i’, if it obligatory, and destination2’, if It optional. Slot-tilling pro-
cedures take as Input a syntactic structure and return a “filler”, provided certain condi-
tions expressed as goals are satisfied.

For example , the ‘destination 1 ’ slot in the ‘construct ’ procedure for DEPI OY, is written as
in Table 3-3.

Table 3-3. A ‘destination’ Clause

+ — - — — - - -- - . - — 

I I
I destination (Vmods , slot (’DESTlNATtONs - ’,Slo t)’~:- I
I fill—slo t (Vmods , (‘TO’], ‘LOC ’,Slot). I
I I

4 . — - — - -- — — - - *

The ‘destInation’ clause take:; the Vmods list as Input, and returns a filler which must be
a prepositional phrase with a preposition ‘to’, and an object nounphrase with the feature
‘LOC’. Notice that the third goal of the construct procedure for ‘DEPLOY’ is a call to the
‘construct’ procedure for building a DIG record. For a full listing of the procedures for
constructIng templates , see Subsection 3.3.

It would appear that the procedures required for filling descriptor slots will cover a wide
spectrum, from those involving a straight forward match of two structures , to those
requIrIng complex operations such as data base searches. A preliminary specification of
procedures developed for the analysis of the air activities sublanguage ~s given In the
next subsection.

3.3 FRI Procedures for Event Record Synthesis

In this section we present the set of ‘air activities’ event templates and their associ-
ated procedures as expressed in ERL, the formalism from whIch they will be compiled.

~
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The templates developed so far for the air activities domain cover four types of entities:
events, objects, relatIons, and concepts related to time and date (the DTG concept).
Templates have been developed for the following event classes: ‘active’, ‘arrive ’,
‘depart’, ‘deploy’, ‘enroute’, ‘flight’, ‘locate’, ‘penetrate’, ‘recover ’, and ‘return’. The only
physical object currently associated with a template is the ‘aircraft ’. How relations are
encoded In Prolog is illustrated by the ‘precede’ template. A special template ha~ been
developed for the date time group concept (DTG).
In addition to the procedures for expressing templates, there are a number of other pro-
cedures which serve the purpose of initiating the event synthesis process, by identify-
Ing the template required for the interpretation of a particular input string. This is the
function of the ‘build_ ER’ procedure described below.
3.3.1 The ‘build ER’ Procedure A ‘build_ ER’ clause takes as input a parse tree (or a
substructure thereof), finds the name of the template to be activated, invokes the
corresponding ‘construct ’ clause, and returns an event record (ER). The ‘build_ ER’ pro-
cedure has three entry points corresponding to the three cases listed below.

3.3.7.1 Input is a Sentence:-
build_ ER (s(Subj,Vbgr,Obj,Compl,Vmods),temp(Name,ER)):-

find_ t_ name(Vbgr,Name),
construct(Name,s(subj ,vbgr,Obj,compl,vmods),ER).

3.3.1.2 Input is a Nominalized Sentence:-
bulld_ ER(np(Det,L1 ,N(W,._ ),L2),ER):-

feat(W,’NOMZ’),
change(np(Det,L1 ,N(W,_),L2),T1),
bulld_ ER(T1 ,ER).

3.3.7.3 Input Is a Nounphrase:-
buIld_ ER(np(Det,L1 ,Noun,L2),ER):-

flnd_ t_ name(Noun,Name),
construct(Name,np(Det,L1 ,Noun,L2),ER).

‘buIld_ ER’ clauses have two or more subgoals. The task of the 7find_ t_ name’ pro-
cedure Is to Identify the name of the template required for the interpretation of the
input, while the purpose of the ‘construct ’ procedure is to fill in the slots of the template
thus identified, i.e., to construct an event record (ER). This event record is the content
representation of the Input. The ‘feat’ clause is a built-in procedure, also referred to in
Prolog as an ‘evaluable predicate’. ‘feat’ checks a lexical entry for a given feature. For
example, In 3.2.1 above, it checks the headnoun of the nounphrase np for the feature
‘NOMZ’. Finally, ‘change’ Is a normalization procedure which restores sentential structure
to nominalizations.

3.3.2 The ‘construct ’ Procedure A ‘construct’ clause, when activated, generates a set
of subgoals which seek suitable ‘fillers’ for the slots of the template it embodies. The
output is a list of instantiated slots which reflect the meaning content of the input. Irt
this sense, ‘construct’ clauses may be regarded as procedural definitions of templates.
‘Construct’ clauses currently handle four kinds of entities: events (e.g., deploy), physical
objects (e.g., aircraft), relations (e.g., precede), and abstract concepts such as those
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that pertain to date and time indicatIons.
3.3.2.1 Construct Clauses Embodying Event Templates
3.3.2.1.1 ‘active’
construct(’ACT IVE ’,s(SubJ,Vbgr,Obj ,Compl,Vmods)

[081 ,Ml,L1 ,ALT ,S12,DTG)):-
objectl(Subj, 081),
mlssion(s(_ ,_ ,Obj,Compl,Vmods),MI),
locationl (s(_ ,~~,0bj,~~,Vmods), Li),
&titude(lT , ALr),
status2 (IT , ST2),
construct(’DTG ’,Vmods,DTG).

3.3.2.1.2 ‘arrIve’
construct( ’ARRIvE’,s(subJ,vbgr ,obJ,compl vmods) [081 ,D2,DTG]): - 4

objecti (SubJ, 081).
destination2 (Vmods ,02),
construct(’DTG’,Vmods,DTG).

3.3.2.1.3 ‘depart ’
construct( ’DEPART’ ,s(subj ,vbgr ,obj,compl ,vmods) [081 ,S 1 ,L2,DTG]): -

objecti (Subj, OB1),
sourcel (Vmods , Si),
location2 (sL.,....,Obj,_ ,Vmods), L2),
construct(’DTG ‘,Vmods ,DTG).

3.3.2.1.4 ‘deploy ’

construct(’DEPLOY’,s(Subj,vbgr,obJ,compl,vmods) [OB 1 ,D 1 ,DTGJ): -
objecti (Subj, 081),
destination 1 (Vmods ,D1),
construct(’DTG’,Vmods,DTG).

3.3.2. 1.5 ‘enroute ’
Construct(’ENROUTE’,s(Subj,vbgr,ObJ,Compl,Vmods) [OR 1 ,Ml,D 1 ,DTG]):-

objectl (Subj, OB1),
mlsslon(s(_ , . ,ObJ,Compl,Vmods),Ml),
destination 1 (Vmods ,D1),
cOnstruct(’DTG’,Vmocjs,DTG).

3.3.2.1.6 ‘(li ght ’ 
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construct( ’l- I. IGH I ‘,s(Subj,Vbgr.Obj,Compl,Vmods),
(081 ,Ml,1 2,S2,D2,F2 ,OlR,AL T ,PA ,THM,DTG 1): -

objecti (Subj.OBI),
mlssion(s( . ,OuJ.Compl,Vmods), Ml),
Iocetlon2 (s(_, ,Obj . - ,Vmods),L2),
source? (Vmods,S2),
destlnatlon2 (Vmods ,02),
extent? (II. £2). - V

dlrectlon(Vmods , DIR),
altltude(l 1, AL 1),
path(Vmoda , PA),
them(Vmods, h IM),
construct(’Dl G’,Vmods,DIG).

3.3.2.1.1 ‘locate ’

construct(’LOCAII ‘,s(Subj ,Vbgr ,Obj,Compl ,Vmods) ,1AG~’,OL4 1 .11 LU ~ J ) :-
agent2 (II, A G2) .
objecti (SubJ, 081)
locationi (s(. ,  .Obj, ,Vmods), Li) .
construct(’D TG ’,Vmods.D I G).

3.3.2. 7 .8 ‘penetrate’

construct (‘PENt. THAi I ‘,s(Subj .Vbgr,Ohj,Compl,Vmods),[OB 1 .t I ,At 1 ,1)1 ~ j ) -  -

objecti (Subj, 081).
Iocatlon l (s( , ,ObJ. ,Vmods), 11).
•ltitude(l I, ALT ),
construct( ’DT~ ’,Vmods ,D1 & ) .

3.3.2. 1.9 The’ precede’
constructCPRECloE’, s(Subj,~_ .Obj. , ),[E 1 .1 .‘ ))- -

bulld... £R(Subj ,E I) . V

bulld_ ER(Obj, I ?).

3.3.2.7.10 ‘recover ’
construct( ‘RECOVER’ , s(Subj,Vbgr .Ob j .Comp l.Vmods) .~ 0111. [ 1  .l) 1(1’~:-objecti (Subj, 0131).

locationl(s( . .Obj. ,Vmods), t 1),
construct(’DTG ’,Vmods ,DRI).

3.3.2.1. 7 7  ‘return’

construct(’R E I %J13N’,s(Sub).Vbgr .Ob ), Compl ,Vmods),
[081 ,D I .MI,L ?,S?,D1 GJ): -

object I (Subj , 0131),
destInation I (Vmods ,D 1),
mIssIon(sL.~ ,Obj,Compl,Vmods), Ml),
Iocatlon2 (s( 

- ‘  .Obj, ,Vmods). I.’).
source? (Vmods , Si’).
construct(’DI G.Vmods ,L)1 G).



3.3.2.2 Construct Clauses for Templates Representing Physical Objects
3.3.2.2. 7 ‘aircraft ’ Note t hat ‘aircraft ’ Is the only template representing a physical
object in the system at present.
construct(’A IRCRAF T ’,np( Det ,L 1 .Ht~ad ,L2),[ IIQ.NA .SU8,SB ,S1 TJ):-

equlpment(L1 Head ,EQ) ,
netionality(L 1 ,‘nation ’,NA),
eubordlnation(t 2,SUB),
stagingbase( L7 ,SB),
setspec(Det ,SET) .

3.3.2.3 Construct Clauses Relating to Dale an~ Time Concept s
construct(’DTG’ ,Vmods ,[T l ,DT ]): -

time(Vmods , T I) ,
date(Vmods ,DT). - 

-

3.3.3 Procedures for F i l l ing in Template Slots The predicates used for filling template
slots are represented by slot names. A slot name followed by ‘1’ means that filling it is
obligatory; a slot name followed by ‘2’ means that filling it is optional.
3.3.3.? ‘altitude’

aItitude(sL~, ,  , ,Vmods),sIot ( ’A L I =’, Slot)):-
filL slot(Vmods, [‘at ’], ‘AL 1’, Slot).

alt itude( ,ni l).

3.3.3.2 ‘date ’
dete(Vmods ,slot( ’ [)Al I ‘,t .W ,Day,Month,Year)):-

member(pp(1 ,W ,date (Day, Mont h ,Year)),Vmods).
date( , nil ).

3.3.3.3 ‘dest/nat ion’

destination 1 (Vmods ,slotL’[*Sl INAI tON~ ’,S)ot )):-
filL slot( Vmods,[’TO’~,’t .3C ’ ,SIot).

destinat ion? (X ,~
) - destination I (~ ,V ) .

dest Ination? (
~~ .nil) .

3.3.3.4 ‘direction ’
direc.tion(Vmods~stot(’flIR ( Cl I0N~ ’,Sk’t)) -

fill slot(Vmods , ‘DIR ’, Slot ).

dlrection(. ,nll).
3.3.3.5 ‘equipment’

\ equlpmnnt(t ist .nnode(W . - ) .slot( ’F ()IIIPMENT ’,[list ,WJ)):- feat(W, ’ACRAFT’).
3.3.3.6 ‘location ’

L 
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Iocatlonl(lnput ,siot( ’LOCATI0N ’,x)) :_ locati (input ,X) .
Iocatlon2( lnput ,slot( ‘t OCATION ’,X)) : - locat2( Input .X).
locati (lnput ,cons(X ,t .ist )) :— loc(Input ,X), Iocat2(input ,L ist).
iocat2(lnput ,cons(X ,List )) :— Ioc(lnput ,X), Iocat2(lnput ,List).
Iocat2( _ ,nil).
loc(sL ,_,_ ,~~,Vmods) , Slot):-

flll _ slot(Vmods ,[’ALONG’ ,’A T ’,’L A ST OF ’ ,’lN’,’OVER’), ’LOC ’,Slot)
Ioc(sL ,NP , , ),NP):- test_ nhead(pJp,’LOC ’).
3.3.3.7 ‘mission ’
mission(s( , , ,..... ,Vmods) .slot(’MiSSiON=’, Slot)):-

filLslot(Vmods , [‘AFTER’ , ‘FROM’ ,’lN’ ,’ON ’J, ‘ACTY ’ , Sk t).
mission(s( , ,NP , ,_ ),slot(’MlSSI0N~’,NP)):- test . rmead(NP,’NOMZ’).
missionL.. ,ni l) .

3.3.3.8 ‘nationality ’
nationality(L,st , Feature ,slot(’NATIONALIIY= ’, W)):- member(nnode(W ,_ ),List) ,

feat(W ,Feature).
nationality(List , Feature ,slot( ’NAT IONALiTY= ’,W )):- member(W ,List) ,

feat(W ,Feature).
nationality( , nil).

3.3.3.9 ‘object’
objecti (NP ,slot(’OBJEC 1= ’, Slot)):- test_ nh ead(NP ,’A C H A~ I ‘),

construct(’AIRCRAF I ‘,NP, Slot).

3.3.3.10 ‘path’

path(Vmods ,slot(’PAT H =’, Slot)):- filL rlot(Vmods ,[’VIA’], ’LOC’,Slot).
path(_ ,nhI).

3.3.3.11 ‘setspec ’
setspec(dp( , ,Num),sIot( ’NUMBER~’,Num).
setspecL , nil).

3.3.3.12 ‘source’

source1(Vmods ,slot( ’ SOURcE~ ’, Slot):- ttll _ slot( Vmods ,[’l-HGM’ j, ’L OC ’,Sk’t).
source2(X,Y):- source 1(X ,Y).
source 2 (_

~ ,nil).

3.3.3.13 ‘stagingbase’
staglngbase(Ust ,slot(’ST AG l~ G13As~ ~~

‘
, Slot):- tilLslot(List ,[’AT ’j .

‘LOC ’,Slot).
ataglngbase(_ ,nil).

3.3.3.14 ‘subordination ’
subordination(1 ist ,slot(SUB0R[)INA Tl~ ~Nr ‘) ,~~k~t ~

) -

till slnt(1 ist ,j ~l-ROM’J. SI I~Nt IM ,SIot
subordlnation( - nil).

1— :~
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3.3.3.15 ‘the m’ (the threat )
them(Vmods ,slot(’THEM=’, Slot):-

fill _ slot(Vmods , [‘AGAINST’ ], ‘NATION ’, S ot).
themL ,nhi).

3.3.3.16 ‘time ’
time(Vmods ,slot( ’T IM E ~~

‘
, Slot):-

f lnd .. t ime(Vmod s ,[’AT ’ ,’BE T WEEN ’,’By ’,’DURING’,’SINCE’],’TYME’
Siot).

time(Vmods ,slot(’ TIME = ‘,Slot) : -
find _ t ime(Vrnods,[ Al ‘,‘EW rwEEN ’,’BY’ ,’DuR1NG’ ,’slNcE’],’4olG’,

Slot).
time(Vmods ,slot( ’TIMF =’,SIot):-

fi ll_ slot(Vmods,[’AT’,’13E TWEFN ’,’BY’,’DURING’,’sINCE’],’TVME’,
Slot).

time(Vmods ,sIot(’T lME~ ’, Slot):-
fill slot( Vmocls , ‘TY ME ’,SIot).

tlme(_ ,nil).

3.3.4 Other Procedures

3.3.4. 1 ‘f i I l . ~s/ o t ’
fill slot(List , Prepl is t , Feature ,[L 1 ,Prep,NP]):-

member (pp(L1 .Prep,NP),List),
member(Prepa , Preplist), lexeq(Prep,Prepa) ,

test_ nhead(NP, Feature).
Given the Vmods list , a list of prepositions Preplist , and a lexIcal feature Feature ,
‘f i l l _ slot ’ sear ches the Vmods list f or a prepositional phrase (pp), such that Prep is a
member of Preplist and the headnoun of NP has the feature Feature. ‘f i l l _ slot ’ returns
the prepositicial phrase ‘pp ’.
f ill_ slot( List , Fedture ,W):-

memt)er (Wa , List) , Iexeq(W ,Wa),
feat(W ,’ADVB’),
fea t(W , Feature).

Given the Vmcds list and a lexical feature Feature, tilL slot’ searches the Vmods list for
an adverb with feature Fentt i re ,and returns the adverb.

f l l I _ slot(NP , Feature ,NP):- test _ nhead(NP,’LOC’).

3.3.4.2 ‘fini i.feat ’

find_ feat(W ,L ,Y ) :—
member(Y ,L),

fea t(W ,Y).

‘tlnd~ f e a t ’ takes as arguments the dict ionary entry of a word W, a list of atoms naming
templates available in the system (L), and returns a va lue for the vari able Y, such that V
Is a member of L, and Y Is a feature of W .

- ~~~~~~~~~~~~~~~~~~~~
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3.3.4.3 ‘find.t..name ’ ‘Find _ t_ nam e ’ Is a procedure for finding the name of the tern-
plate to be actIvated for the Interpretation of a particular input structure. ‘find.. t - n a m e ’
has two entry points according to whether the template tiame sought is derivable from a
verbgroup or from a noun .

3.3.4.3.1 The template name Is derivable from a verbgroup:-
flnd _ t~ name(vg(_ , - , ,W),Name): -

f lnd feat(W ,[’ARR IVE’ ,DEPART’ ,DEPLOy’ ,’ENRO U TE ’ ,’F L I G H T ’,
‘LOCATE’ ,’PENE T R AT E’,’PRECEDE’ , R ECOVER ’,
‘RETURN’],Name).

3.3.4.3. ’~’ The template name is c’erivabie from a flOUn:-

f lnd _ t_ n. me(nnode(W ,_ ),Name):-
f ind fea t (W ,[’A IRCRAFT’], Name).

3.3.4.4 ‘find.time ’

flnd_ t ime(L I st , Prepl is t, Feature ,[L 1 ,W ,L2]):-
member(pp(L1 ,W,L2) ,List) ,
member(Wa ,Preplist) , lexeq(W ,Wa) ,
member(X ,L2),
feat(X ,Feature).

3.3.4.5 ‘test.nheaci’

tesLnhead(np(_ ,_ ,nnode( W ,_ ),_ ),Feature) :- feat(W ,Feature).
‘tesLnhead’ determines whether the head noun (W) of the input np the feature
Feature.

3.3.4.6 Llstdefinition
llst( []).
llst(X ,L):— llst(L).

3.3.4.7 Listmernbership

member(X,fX,.._]).
member(X ,[_,..L]):- mernber(X ,L).

3.3.5 Syntact/c Normalization Rules.
3.3.5. 1 Nominalizations. The rules listed below apply to nominalizations in subject posi-
tion and/or nominallzations in object position.

3.3.5. 7 .  1 Restructuring ‘Passive ’ Nounphrases.
Example: A WEATHER RECONNAISSANCE FLIGHT BY ONE

PRETORIA BASED SP-256 B-80 (BEACON)
TO THE CAPE VERDE ISLANDS.

change(np(Det ,[1 1 ,X], nn ode(W ,O) , [X 1 ,pp ,by,Y) ,X2 ]),
s(Y ,vg(_ ,.... . , ,W) ,np(Det ,L 1 ,nno de(X ,O),[ ]),_ ,[X 1 ,X2 ])) :—

test,. nhead(Y,’NOMZ’).

1 - 7
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3.3.5.1.2 Restructuring ‘Acti ve ’ Nounphrases
Example) ; UAF B-Tb DEPLOYMENTS TO MAURITII.IS
change(np(Det ,[L 1 ,X],nnode(W ,O), L2),

s(np(Det ,L1 ,nnode(X ,O),[]),vg( ..- , , W) , O,O,L2)).
Exampte2; DEPLOYMENT OF 12 AIRCRAFT TO KIGALI
chango(np(Det 1,11 , nriode(W 1 ,pp(_ ,of ,np(Det2 , L 2 ,nnode(W2 ,O),[)))), 13),

s(np(O ,[L2],nnode(W2,O),[]),vg( , ,_ ,W 1 ) ,O,O,L3)) :—
fea t (W2 ,’acraft ’).

3.4 Event Recor d Synthesis, an Example
Before presenting an example of how templates are executed by ERL, a word should be
said about the control mechanism employed by the system.
3.4. 1 ~he ERL Control Mechanism. Prolog provides a remarkably simple form of Control ,
which suffices for many pract~cac applications.

The declarative sem antics of Prolog clauses is such that the ord2r of the goals in a
clause and the order of the clauses themselves are both irrelevant to the declarative
interpretation. However , these orderings are generaliy significant in Prolog, as they con-
stitute the main control information.

When the Prolog system is executing a procedure call, the c lause ordering determines
the order in which the different entry points of the procedure are tried. The goal order-
Ing fixes the order in whic h the procedure calls in a clause are executed. The ‘produc-
five’ effect of a Prolog computation arises from the process of ‘matching’ a procedure
call ~galnst a procedure entry point.

3.4.2 Step by Step Description of the Synthesis Process. In this section we descr ibe by
means of an examnle how [RI template representations drive event record synthesis.
Consider the following example:

(1) THiS AiRCRAF T ROUTINELY PRECEDES UAF 8-75 DEPLOYMENTS TO MAURITIUS.
As pointed out pcev~ousiy, one of the basic principles underlying our approach to the
content analysis of narrative text is that the structural descriptions at all levels of
analys s should be homogeneous. Sentence (1) above was chosen precisely because it
allows us to show how the same formalism lends itself naturally to the description of
structures and processes at several levels of grammatical description thus providing a
homogeneous approach to the interpretation of the syntactic structures output by the
ATN. Specifically, the le vels of gram matical description involved In the analysis of (1)
are:-

• Syntactic normai zation;

• the description of objects (aircraft);

• the description of an atomic event (‘deployments ’);

• the description of a text-level relation (‘prece de’).
Sentence (1) states that certain deployments are routinely preceded by a certain flight.
Notice that syntactically, (1) is a simple sentence of the form Subject , Verb , Object.
Conceptually, however , it is a complex structure in which the main verb ‘precede ’
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functions as a text-level relation locating two events on the time line. The two events
are linguIstIcally encoded as the subject and the object of the verb ‘precede ’. Note that
the subject is ‘this aircraft ’ which, although syntactically a simple noun phrase ~1escrib-
Ing an object , is understood as ‘the flight of this aircraft ’, i.e., it is understoc~l as the
description of an event. This Is information which does not reside in the actual text , ..nd
which will eventually be supplied by an inferential component utilizing extralinguistic
knowledge stored in the system. The current version of ERL lacks the necessary
Inferential mechanisms which would supply this information. ‘This aircraft ’, therefore, is
interpreted as the description of an object. As mentioned above, ‘precede ’ relates two
events on the time axis. ‘Precede’, then, is a relation which has two arguments: a
‘predecessor ’ and a ‘successor ’. As indicated above, the first argument of ‘precede ’ --
the ‘predecessor ’-- will be an aircraft description. The second argument of ‘preci~’de’--
the ‘successor ’ -- will be the interpretation of the syntactic object of the sentence.
ERL utilizes a normalization rule to transform the latter into a sentential structure which
Is then further interpreted by rules of semantic interpretation, and transformed into an
event record of type ‘deploy’.

A diagrammatic representation of the final output of the event record synthesizer~isgiven in Figure 1, which is read as follows:-
The record is of type ‘precede’. The ‘predecessor ’ describes an object of type ‘aircraft ’,
while the ‘successor ’ describes an event of type ‘deploy’. The objects being deployed
are UAF B-75s, and the destination ot these aircraft is Mauritius.

Precede — 

I M o d i f i e r :  ROUTINELY I A l r c r a f t  I
I Predecessor:  > l E q u lp in e n t :  THIS AIRCRAFT I I

) Object : —~— > I A 1r c r a f t  I I
I I E q u i p m e n t :  B— 7 5 I I
I Successor: > 1 I Se rvic e :  UAF f I

I I I
I Iflestination : TO MAUR ITTUS
I I I I 

I I

1 -- ~~~. 

F igure 1. Content Representation of “THIS AIRCRAFT ROUTINELY
PRECEDES UAF B-75 DEPLOYMENTS TO MAURITIUS” .

3.4.2.1 The Initiation of the Synthesis Process. in this section we give a detailed step
by step description of the event record synthesis process as executed by r’IAT RFS Il.
As explained in a previous section, the ERL semantic interpretation rules (clauses) are
used top-down, one at a time. Goals in a clause are executed from left to riCht. If there
are alternative clauses at any point , backtracking will return to them. To see how parse
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trees are Interpreted by FIUV , consider (2) , which is the parse tree of sentence ( 1) . -

(2) s(np(dp(O , T HIS,O),[J, nnode (AIRCR A FT ,O),[ j ),

vg([HOU I INFLYJ, ( j,O,PHE CE OE S) .
np(0,[nnode(UAF,O),nnode( B—I 6,0)),

nnode(t)FPI OYM ENTS ,O),

~~~ 
[pp(~ 1,T0,np(O,E 1,fl, xl (MA UITIUs ,0),[ 1)) 1),

°~tP.
For simplicity of exposition we will henceforth refer to structure (2) as ‘ 1 moo iii’.

The synthesis process involves the e xecution of the system-generated goal (3);

(3) :— build . FR (‘Ii on in’ ,LH).

‘build FF 1’ Cl aU SeS have two arguments: the input structure ‘Tree~ in ’, which in our ~~asn

Is the structure qiven in (2), and an output structure I R, w hich is the content repros i’n—

tatlon of ‘T r e e_ in ’. . . -

3.4.2 .2 i) c t iva tion of t emplate. Since ‘t ree - in ’ in our example is a sontent ial structure .

goal (3) unifies with the head of I Ii’ f i rst  clause of the ‘build _ i- H’ procedure (4):

(4) build _ FR (s(Subj,Vbgr .Obj .COI11PI.VmOdS),F11):—
flnd _. I riame(Vhcjr,Naiiie),
construct(Naiui’ , I roe _ in ’ .1 11). -

This results in the following instantiations:

(5) Subj = np(tlp(O ,l i l I S ,0),[1,I~IiOdO (AlRCF1A 1 1 ,O) ,fl);
Vbgr = vg(~ROUI lNt I Y],( ],O.PI1I-CFDI 5),
Obj np(O,[nnodii(UAI ,0), nnodo( [3— ~‘i ,O)j ,

— nnode(DFPLOYMINtS ,O),
[P~ (t 1,TO ,np (0j ],I1I1OUIO(MA TILIS,0),i]))])

Compl = 0;
Vmnds = [1.

1 he body of the matching clatisi ’ instance (4) also gives rise to the two now subgoals

(6) and (I);

(6) f i n d  t nnmo (v g( [ROL J I IN I  i Y 
~ J,0,i’lll Cl fli S),Name).

(i’) construct(Namn ,
s(np(dp(0 .TI 4 I S ,0),[ 1,nilt le(AIRU HAl I .p).E I).
vg([flOtJflNit Y) .[ ~.0.PflF CFr)FS),
np( Oj  nnode(tlA I ,O) ,i~co li’(lt -

nnodi-’(Di l’I O’YMI Ni 5,0’) .
I pp( [ ~.1 0.np( O ,( I.nnode( MAI 1111 I ltIS ,0),[ 1))]).

0,1 ]), } H).

he first task is to ~l& ’nt i fy the template mm ’q~iired for the interpretation of ( ‘‘I 1 his Is

achieved by t ’~~t’ :uti,1g ~io~ I (t~ lI:.t~’ I above.

Goal (6) matches the bend of the Ii, sI clans” of the ‘find_ t name ’ procodiu r o (500 8). I t

produces the instant iatuens ci ‘ ) , nod yields tt~~ nOW goal ( 10 ) : —

1— •~~()
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(8) find_ t_name (vgL.,_,_ ,W),Y):-
flnd _ feat(W,L,Y).

(9) W =‘precedes ’ ; V = Name

(10) fInd_ feat (‘precedes’, [list of event template names], Name).

Goal (10) in turn unifies with the head of the ‘find_ feat’ clause (11)

(11) fInd_ feat (W ,L,V ):—
mem (Y ,L),

feat (W ,Y).

This creates the following instantiation (12):-

(12) f ind_ feat (‘precedes ’, [list of event template names], Name):-
mem(Name,[Iist of event template names]),
feat(’precedes ’, Name).

The execution of the subgoals of (12) result in the instantiations (13):-

(13.1) Name = ‘Precede’ ,and
(13.2) construct(’precede’, Tree-in’, ER).

where (1 3.2) Is still only a partial instantiation of (7).

Goal (6) is now fully instantiated, i.e., the name of the template sought was found to be
‘precede’.The system now proceedes to execute second goal set up by executing (3),
namely goal (7), now instantiated to (13.2). Executing this goal results in the instantia-
tion of the two arguments of ‘precede’, namely, El and E2.

3.4.2.3 Instantiating the Arguments of ‘PRECEDE ’ The reader Is reminded that the verb
‘precede’ is a two-place predicate whose interpretation in the environment of a subject
El and an object E2 is ‘before(E1,E2)’. The ‘construct ’ procedure for ‘precede’ seeks to
find fillers for the two arguments El and E2. To achieve this result, goal (13.2) unifIes
with the head of the ‘contsruct ’ clause for ‘precede’ (14), and sets up the two subgoals
(14.1) and (14.2):-

(14) construct (‘precede’, s(Subj ,_,Obj,_,_) , [E1,E2]):-.
(14.1) build_ EFI(Subj,E 1) ,
(14.2) build_ ER(Obj, E2).

where, according to (5),

Subj np (dp(O,THIS,0),(],nnode(AIRCRAFT,O),[]);
Obj np(0,[nnode(UAF ,0),nnode(B-75,0)],

nnode(DEPLOYMENTS,O),
(pp([],TO,np(0 ,[J,nnode(MAURITIUS,0),[]))]).

The next step Is to execute goals (14.1) and (14.2).

3.4.2.4 Interpreting the Syntactic Subject. The partially instantiated goal (14.1) is
shown In (15):-

(15) build_ ER(np(dp(O ,THI S ,O),f ],nnode(A IHCRAFT) ,O),[]),ER).

Since the first argument of (15) is a nounphrase , it will unIfy with the head of the
second ‘build_ ER ’ clause (16):-
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(16) build_ ER(np(Oet ,L1 ,N(W . - ),L2), ER) :-
feat(W ,’NOMZ’),
change(np(Oet ,L 1 ,N(W ,_ ),t 2),T 1),
bulld_ ER ( T 1  ,ER).

However, the first goal of clause (16) requires that the headnoun have the feature
‘NOMZ’. This is not the case in our example , so that the first goal fails. The system now
backtracks , i.e., ~t rejects the most recentl y activated clause (16) undoing any substitu-
tions made by the match with the head of the clause. Next , it reconsiders the original
goal (15) which activated the rejected clause , and trIes to find a subsequent clause
which also matches the goal. As a result , goal (15) now unifies with the head of the
third ‘build_ f-H ’ clause (17):-

(1 7) build_ ER(np([)et ,L 1 ,Noun ,L2),ER):-
(1 7.1) find t - - name(Noun,Name),
(1 / .2) construct(Namn ,np(Det ,L 1 ,Noun,L2) , ER).

This results in the fo llowing instantiations:—

(18) Det = dp(O,THI S ,0);
Li = [] ;

Noun = nnod e (AI RCRAFT ,0);

E1 ER.
The first goal of (17) unifies with (10):-

(19) fin t name(niiode(W ,O),Y):-
f Ind .... feat(W ,[’aircraft ’, ‘DTG ’, etc j, Y).

The procedure here is similar to that described eariler. As a result of the unification pro-
cess, and of executing (1 0), we have the following instantiation:-

W = ‘AIRCRAFT’
V Name = ‘aircraft ’.

Clause (17.1) Is now fully Instantiated -- the template sought has been found to be the
‘aircraft ’ template. The system proceedes to the execution of goal (i 7.2).
Goal (1 1.2) Is now partiall y ‘u;stnntiated to (20):-

(20) construct(’a ir cr a f t ’, np(0 ,THI S ,0),[1,
nnode(AIR CRAF I ,0),[}),ER).

Goal (20) activates the ‘construct ’ procedure for ‘aircraft ’, which fills the ‘equIpment’
slot with ‘this aircraft ’, and le,n,es all other slots empty. The result of executIng (20)
is: -

I &1 t L t ’~ t’ t
El = I e q ; i l p m e n t =  THl ~ A I E Z C R \ F T  I

— - +
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3.4.2.5 Interpreting the Syntactic Object. Rather than describing the process of syn-
thesIzing a record for ‘this aircraft ’ in detail, we will return to the second goal of the
‘construct’ clause for ‘precede ’, namely, to (14.2), which is now partly instantiated to
(21):-

(21) bulld_ ER(np(0,[nnode(IJAF,O), nnode(B-75,0)J,
nnode(DEPL.OYMENTS,0),
[pp([],TO,np(0,[ ],nnode(MAUR1T$US,O),[]))]),ER).

The first argument of this clause Is the nominalized sentence ‘UAF 8-75 DEPLOYMENTS
TO MAURITIUS’ .AccordlngIy , clause (21) will unIfy with the head of the second ‘build_ ER’
clause, namely (16) , reproduced here as (22) In Its partly instantiated form, complete
with Its subgoals (22.1), (22.2), and (22.3):-

(22) bulld_ EFl(np(O ,[nnode(UAF,O),nnode(B-75,O)],
flnode(DEPLOYMENTS,O),
[pp([],T0,np (O ,[),nnode(MAURITIUS,O),[]))J),ER):-

(22.1) feat(DEPLOYMENTS, ‘NOMZ’),
(22.2) change(np(O,[nnode(UAF ,o),nnode(B- 75,0)],

nnode(DEPLOYMENTS,O),
(pP([),TO,np(0,[],nnode(MAURITI(J5,O),[)))]),T 1) ,

(22.3) build_ ER(T1 ,ER).
Goal (22.1) succeeds, and the system activates the ‘change’ procedure. Goal (22.2)
unifies wIth (23) below, which restructures the Input nounphrase Into a sentential
structure: -

(23) change(np(Det ,[L 1 ,X],nnode(W ,O),L2),
s(np(Det,Li ,nnode(X,0),[],),vg(_ ,_ ,O,W),O,0,12)).

Upon unification wIth (22.2), (23) becomes Instantiated to (24):
(24) change(np(0,[nnode(uAF,o),nnode(B_ 75,o)],

nnode(OEPLOYMENTS,O),
(pP([],TO,np(0,[],nnode(MAURITItJS,O),[]))])

a(np(0,[nnode(UAF,0)J,
nnode(B- 75,O),[]),
vg([J,[],O,OEPLOYMUNr s) ,
0,
0,
[PP([],TO,np(0,[],nnode(MAuRITIIJS,O),[]))])).

Ti is Instantiated to the second argument of (24). The system now proceedes to exe-
cute poe1 (22.3) reproduced here In its Instantiated form (25):-

(25) buit&_ ER(s(np(O ,tnnode(LJAF,o)],
nnode(B- 75,O),[J,
vg([],[ 1,O,OEPLOYMEN1 S),
0,0,
[pp([ ],TO,np(O,[ ],nnode(MAIJRIT IUS,O),[]))]),ER).

Execution of the ‘built_ ER’ goal (25) eventually results In the actIvation of the ‘con-
struct ’ clause for ‘deploy’ (26):-

1-- .13
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(26) construct( ’deploy ’ ,IT, [01 ,D I ,T2]):-
objecti (IT, 01),
destinationi (IT , 01),
t ime2 (IT , 12).

with ‘IT’ instantiated to the first argument of (25). The goal ‘object 1’ activates the
‘objecti’ procedure (28):-

(28) objecti (s(Subj,_ ,_ ,_,_ ), Slot):-
test_ nhead(Subj, ‘acraf t ’),
construct ‘aircraft ’, Subj, Slot).

The result Is the instantiation:-

SubJ = np(O,[nnode(UAF ,O)],nnode(8-75,O),[]).

and ‘Slot ’ gets linked to ‘01’.
The goal ‘test_ nhead ’ determines whether the headnoun(W) of a noun phrase ‘np ’ has - I
the feature Feature. It unifies with the clause for ‘test_ nhead’ (30), and results In the
Instantlations (31):-

(30) tesLnhead (np (_ ,_ ,nnode(W ,_)) ,Feature
(31) W= ‘8-75’; Feature = ‘acraft ’

Goal (30) succeeds, and the system begins executing the second goal of (28) namely
(33):-

(33) construct (‘a;rcraft ’, Subj,ER).

The second goal of (26) activates the ‘destination’ procedure (35) and returns Dl = ‘To
Mauritius’

(35) destination (s(_ , , ,_,Vmods), Slot):-
fill_ slot(Vmods , [‘nil’, ‘to’ J, ‘ b c ’, Slot).

The third goal of (28) activates the ‘t ime2 ’ procedure (37), whIch returns 12 = ‘nil ’.

(37) time2 (s(_ , . , ,Vmods), Slot):-
f i l l _ slot( Vmods , [‘at ’, ‘between’, ‘by’, ‘during ’],
‘tyme’, Slot).

t ime2 (s(_ . , ,  ,Vmods), Slot):-
fill_ slot(Vmods , ‘tyme ’, Slot).

tIme? C~.. ,niI).

This completes the execution of goal (26). As a result , the second output element (E2)
of the ‘construct ’ procedure for ‘precede’ Is instantIated to an event record of type
‘deploy ’, I.e.,
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I deploy

I object= I aircraft I I
E2 = I I equipment= B-75 I I

I 1 servlce= UAF 1 I
I I I I

I dest inat ion = TO MA U R I T I US I
+ +

3.4.2.6 Output of Event Record Synthesis Process. The complete diagrammatic
representation of the content of (1) Is given In figure 1, which shows the relation
between El , E2, and its subparts.

The text-level semantic Interpretation rule Si of the Matres II System now interprets
the results as follows:-

Si. [‘precede’, ‘Tree_ In ’, (El , E2]] => before(E 1, E2)

meaning “The content of El happens before the content of E2” .
ThIs completes our account of the Interpretation of sentence (1).

j
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4.0 The MATRES II System

4.1 Introduct Ion

MATRES II Is the result of the second cycle In the development of a system with full
capabilities for deriving formatted records from the narrative text of lntelligei1ce mes-
sages. It represents a considerable advance on MATRES I, whIch provided only a rudi-
mentary capability for testing algorithms for narrative text analysis.

The primary subject domain of MATRES II Is that of air actIvities. While In a fully
developed system the unit of analysis would be the entire message , the scope of the
current system is still limited to the analysis of single sentences.

The MATRES I parser has undergone considerable refInement and expansion and
currently accepts a much wIder range of syntactIc constructions than was previously
achieved. The definition of the input language accepted by the system Is embodied In a
transition network grammar model based upon Woods (1970, 1073). A detailed description
of the syntactic constructions accepted by the current system Is given in subsection
4.3.

Since the transition network parsing methodology is by now quite weli known, little will
be said about the parser Itself. Part II of this report , however, does Include detailed
documentation of our particular implementation. In this section, we focus mainly upon the
parsing strategy adopted in MATRES II, including the augmented transition nets used by
the system. This is the subject of subsection 4.4.

In the current system english language words are entered into a linguistic dictionary,
while strings with fixed patterns are recognized at the input stage by a finite state
automaton (FSA) designed especially for tills purpose.

The major feature of MATRES Il ls its capability for semantic analysis. This is achieved
by means of the Event Representation Language, which is a language specially
developed for mapping the syntactic structures produced by the parser Into template-
derived content representations. As discussed In Section 3, the basic data structure of
the Event Representation Language is the template. Section 4.6 descrIbes the tom,,bate
Inventory so far developed for the aircraft domaIn , and presents the methodology for the
selection of the descriptors to be included in templates of a particular subject domain.
The next section provides a brief functional description of MATRES II.
4.2 MATRES Ii - - Functional Description

An overview of the MAIRES II syste m organiz at ion and data flow Is shown in Figure 4- 1.
The main system components are: the Lexical Unit Recognizer , the A T N parser , and the
ERL “machine”. The direction of the arrows in the Figure indIcate the general flow of
Information as a sentence Is processed through the system. The main stages of event
record generation are shown across the center of the Figure. The analysis begins when
an input sentence ~s receIved by the Lexical Unit RecognIzer , which uses a stored dIc-
tionary and the I SA Recognizer to transform the Individual words of an input sentence
Into a string of lexical units . First , a dictionary look-up process replaces words and
phrases In the sentence with corresponding lexIcal entrIes. Strings which have no
entries In the dictionary arc passed to the US A Recognizer, which attempts to identity
them as one of several f ixed-pattern categorIes. The output of thIs stage is a string of
lexical unIts containing syntactic and semantic information for use by the parser , and
later by the FIRL Interpretive routines.
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Next, the string is input to the parser , which analyzes It according to the sublanguage
grammar stored in the system, and produces a parse tree showing the constituent struc-
tures of the input string and their hierarchical relationships.

The parse tree in turn is input to the FAt “machine ”, which uses the pattern matching
process (“unification mechanism ”) of the Event Representation L anguage to produce a
set of one or more event records representing the information content of the input ser’-
tence.
FeedIng into this are the various analysis components , each compiled from a source text -

‘

in a language appropriate to the component. The base language for all the programs --

except the ERL machine -- is Forth; the respective compliers are written in FORTH and
the compiled form of the various components is the threaded code characteristic of
Forth. The [A L compiler is coded in SPITBOL , a dialect of SNOBO 4, which wos chosen
because of its excellent facilities for compiler writing.

The following are two examples showing the Internal processing of sentences. The first -
. -

example shows the parse tree followed by the event record produced by the ERL
machine; the second example only shows the input sentence and the MATRES II output.

E\~mp1e I

~~~ > ThO thi~\DiN .ACFT FROM R E G I M E N T  A3 13 AT ENTEB B E D E P L O Y E D  TO GUL U
aAT 02001 ON 21 FEBRUARY.
PAR SE OUTPUT:
LIST  OF:
I NODE: u S  

—

I L IS T OF:
I I I NODE: 2 1 F F
I I I I NODE: 4 I D A T E

I I I I
I I I I I 392 . . FEBRUARY
I I I I I LI ST OF:
I I I I I I 3~ 2. . 2 1
I I I I I EN D 1.1ST
I I I I END NODE
I I I 1 352. . ON
I I 1 I L IS T OF:
I I I I END LIS T
I I I  END NODE
I I I NODE: 21FF
I I I I LIST OF:
I I I I I 332.. 0200Z
I I I I EN D LIST
I I I I 312. . AT
I I I I L IST  OF:
I I I I END L I ST
I I I END N O D E
I I NO D E:  2 i P P
I I I NODE: 2 I N P
I I I I I L I ST OF:
I I I I I E N D LIST

I I I I NODE: 5 I N N O D
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I I I I I I << N i L >>
I I I I I I 292. . GU LU
I I I I I END NODE
I I I I I LIST OF:
I I I I I END LIST
I I I I I < < N I L ) >
l i i i  END NODE
I I I I 272. .10
I I I I LIST OF: I:
I I I I END LIST
I I  I END NODE-
I I END LIST
I I < < N 1 L ~~
I I < ( N I L > )
I I NODE: 2 I V G
I I I 232 . . DEPLOYED
I I I < < N I L > >
I I I LIST OF:
I I I END LIST
I I I LIST OF:
I I I END LIST
I I  END NODE
I I NODE: 2 I N P
I I I LIST OF:
I I I I NODE: 2 I P P
I I I I I NODE: 2 I N P
I I I I I I LIST OF:
I I I I I I END LIST
I I I I I I NODE : SINNOD
I I I I I I I < < N I L ) >

— I I I I I I I 212. . ENTEBBE
I I I I I I E N D NODE
I I I I I I L I S T OF:
I I I I I I END LIST
I I I I I I ( < N I L > )
I I I I I E N D  NODE
I I I I I 192. . AT
1 1 1 1 1  LIST OF:
1 1 1 1  I END LI ST
I I I I E N D  NODE
I I I I NODE: 2 I P P
I I I I I NODE: 2 ( N P
I I I I I I LIST OF:
I I I I I I END LIST
I I I I I I NODE: 5 IN NO D
I I I I I I I < < N I L > >
I I I I I I I 172. . A3 13
I I I I I I END NODE
I I I I I I L IST OF:
I I I I I I I NODE: S I N N O D
I I I I I I I I N I L ’~.
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I I I I I I I I 182.. REGIMENT
I I I I I I I END NODE
I I I I I I END LI ST
I I I I I I < N 1L~~
1 1 1 1 1  END NODE
I I I I I 152. . FROM
I I I I I L IST OF:
1 1 1 1 1  END LIST
1 1 1 1 ENO NODE
I I I END LIST
I I I NODE: 5I NNOD
I I I I < < N I L > >  - -

I I I I 132. . ACFT
I I I END NODE
I I I LIS T OF:
I I I I 112. . UGANDAN
I I I END LIST
I I I NODE: 2 I D P
I I I I L IST OF:
I I I I 1 92. . TWO
I I I I END LIS T
I I I I < < N I L > >
I I I I < < N I L > >
I I  I END NODE
I I  END NODE
I END NODE
END LIST
Event: DEPLOY
Obj ect:
... Equlpment= UGANDAN ACFT
. . . N a t t o n a l u t y =  UGANDAN
. . . S u b o r d i n a t i o n =  FROM R E G I M E N T  A3 13

Staglngba se= AT ENTE B BE
Nu ni ber = TWO

D e s t i n a t l o n=  TO GULU - ‘

Tj ee= AT 02002 H
Date= ON 21 FEBRUAR Y
EVENT RECORD COMPLETE.

Exaep le 2

*PRTREE OSET
* > >  THE TWO ACFT WERE ENROUTE TO NAIROBI ON RECONNAISSANCE.
Event :  EN R OUTE
Object;
...Equ1pmer~t= ACFT
...Number= TWO
Mlsslon= ON RECONNAISSANCE
D e s t i n at i o n =  TO NA IROBI
EVENT RECORD COMPL ETE.
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4.3 LInguistic Grammar and LexIcon for AIrcraft Domain

4.3. 7 The Grammar. In this section we give sri informal description of the major gram-
mat ical constituents which are recognized by the MATRES II parser , and of the analyses
which are given them. The parser itself is described in section 4.4

4.3.1.1 The Declaratiwe Sentence. A declarative sentence may be a simple sentence , as

in (1), or it may be a simple sentence conjoined by a sentence conjunction with another
simple sentence (of a special type) or with a noun phrase , as in (2) and (3).

(1) THE AIRCRAFT WERE ENROUEE HOMEBASE AT 0200Z.

(2) THE AIRCRAFT WERE ENROUTE HOMEBASE AT 0200Z AFTER
CONDUCTING A RECONNAISSANCE MISSION OVER ThE RED SEA.

(3) THE AIRCRAFT WERE ENROUTE HOMEBASE AT 0200Z AFTER
A RECONNAISSANCE MISSION OVER THE RED SEA.

The MATRES II grammi~r analyzes a declarative sentence as a list having as its f irst ele-
ment a simple sentence , which may be followed optionally by a sentence conjunction and
either another simple sentence or a noun phrase.

4.3.1.2 The Simple Sentence. A simple sentence has a noun phrase subject fol lowed by
a verb group, optionally followed by a direct object , a complement , a~id one or more
post-verb modifiers.

The grammar analyzes a simple sentence as a five-branched node structure. The first
branch points to the subject , the second branch to the verb group, the third to the
object, the fourth to a complement , and the fifth to a list of adverbial modifiers.

4.3.1.3 The Noun Phrase. A noun phrase may consist of a determiner followed by a list
of pre-head modifiers , a head noun, and a lIst of post-head modifiers.

A determiner may consist si.iiply of an article (eg. ‘THE ’), a quantifier (eq. ‘ALL ’), or a
number phrase (eg. ‘AS MANY AS SIX’), or it may be a complex structure involving two or
three of these constituents , as in (4) through (7).

(4) ALL THE AIRCRAFT

(6) ALL SIX AIRCRAFT

(6) THE SIX AIRCRAFT

(7) ALL OF THE SIX AIRCRAFT

Pre-head modifiers may include adjectives , nouns, past participies , and present partici-
pIes. In the aircraft domain , head nouns are typically preceded by several modifi ’rs
refer ring to attributes such as nationality, subordination, equipment type, etc., as in (8).

(8) RETURNiNG UGANDAN UBBC SR-fl AIRCRAFT

Po~sible post-head modifiers are relative clauses , reduced relative clauses , and prepo-
sitional phrasøs. An example of each is given in (9) through (1 1), respectively.
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(9) THE AIRCRAFT WHICH WERE STAGING FROM ENTE3BE

(10) THE AI RCRAFT STAGING FROM ENTEBBE

(11) THE AIRCRAFT FROM ENTEBBE

A noun phrase is analyzed as a four-branched node. The first branch points to a deter-
miner (possibly null, as in (8)), the second to a list of pre-head modifiers , the third to the
head noun, and the fourt h to a list of post-head modifiers.

As a heuristic device , we allow only simple noun phrases (i.e., those without post-head
modifiers) to occur as direct objects or prepositional objects. The reason for this is
best illustrated by an example. In (12), w e wish to analyze the relative clause ‘WHICH
CONDUCTED OPERATIONS OVER THE RED SEA ’ as a post-head modifier of ‘AIRCRAFT’
rather than ‘ENTE BBE’. This is effected by requiring that ‘ENTEBBE’, which is a preposi-
tional object , have no post-head modifiers.

(12) THE AIRCRAFT FROM ENTEBBE WHICH CONDUCTED OPERATIONS
OVER THE RED SEA

Likewise, in the embedded sentence, by requiring that the object of ‘CONDUCTED’ be a
simple noun phrase , we achieve the desired analysis of ‘OVER THE RED SEA’ as an
adverbial modifier , rather than a post-head modifier of ‘OPERATIONS’ .
4.3.1.4 The Verb Group The verb group may consist of an auxiliary followed by a verb ,
as in (13), or an auxiliary followed by a copula followed by an adjective , as in (14).
(1 3) HAVE BEEN CCi~OUC TING

(14) HAVE BEEN ACT IVE

In (13) the auxiliary is ‘HAVE BEEN’, while in (14) the auxiliary is ‘HAVE’ , and ‘BEEN’ is the
copula.

Some verbs (eg. ‘CONDUCT ’, ‘PENETRATE’ ) must be followed by a direct object consti-
tuc’nt , which is another noun phrase. Other verbs (eq. ‘ARRIVE ’) never have a direct
object , wh ile for others (eq. ‘OPERATE ’) the object is optional.
Adverbial modifiers include prepositional phrases and adverbs , and may occur before ~he
subject , as in (1~~), after the verb (and the object , if there is one) as in (16), or embed-
ded within the verb group, as is the case with ‘CURRENTLY ’ in (1 7).
(15) AT 0200 Z ON 22 FEBRUARY , THE AIRCRAFT PENETRATED ENEMY AIRSPACE.

(16) THE A IRC RAFT FLEW NORTH OVER THE INDIAN OCEAN.

(1 7) THE A IHC RAFT ARE CURRENTLY ACTIVE OVER THE RED SEA.
4.3.1.5 fidverbials. Pertaining to adverbial modifiers , there are several constructions
which ure pecUliar to our particular message domain. Principle among these are time
phrases and date phrases , which, along with noun phrases , are accepted as preposi-
tional objects. Some examples of time phrases are given in (18) through (20).
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(18) 0200/

(19) 0200-0400/

(20) 0200/ 10 0.11)0/

Date phrases ~ir k ’  arialy ied us t hree branche l iede~. - 1 he I irst branch points to the day,
the second to the month , ~iiid t tie I hir ’t to the year (the third is of ten null). Some exam—
pIes are given In ( ;‘ 1) through ( ‘3) -

(? 1) ;‘;-‘ I RHUAI-1Y

(22) 2.~’ FL E3RUAHY 4

(23) 1 HE - ‘?NI) I E RHIJA HY

4.3. 1.6 Pas.cl vt? ~S*?n tt11)ct?S . A si ’ r it  I’IiCP such ,is (14) can be paraphrased ds (?
~~~),

where the loqu~ i T sub je . bts~urIlL’s t h~’ qrammatical object , arid the lo~1IciiI object
becomes the granimatb:.il sub j ’~~ I -

(24) DURING 1111 0~’00.-’ I iOtJ R , F OUR AI RC HAF I I ROM HG I X134 12
CONDUC I F D COMMAN[)-AN D- oN [ROt OPt HA I IONS .

(25) DURING THL w- ’oo. -’ HOUR , C O M M A N D - A N I ) - C O N I HO[ OP E R A U O N S
WERE CONI0 R l I D  IY~ I OUR A I R C HAI - I I ROM HG I XR4 12.

The MATRE S It riiitim~ir r verses the passive transformati on , so that  the ,irsIiyses of
(24) and (?t , )  are Id~’nt1cat , with 1 OUR A IRCHA F 1 1 HOM RGT X84 12 ’ as the subject arid
‘COMMAND—AND—CON I H II OPt RAT 1 )N~-~ as the (lirect object.
4.3.2 The / e~~,( -On . Ihe MAIl-if S II lexicon is designed to support the gramm atical
analysis Pr t ’dur& ’ . It ( :onsIsts  0! two par ts-

(I) a c ollect ion of cxi ( :aI entries in the form ot stat ic
a(~~l~irations of exiI:,i! items and their attributes , arid

(ii) a listing of the I ca t  uru’ s or at trib(it(~s employed by the
system.

The attr lbt l t ‘s f a l l  ~flI a sevor~~l Clds~ 0s . L xaniples of each are given below.

(i) Major Gram mat ltsi l Category Specif ications.

ADVI3 (adverb)
AD.t (arl j e&: t lye

— Ali t (~i r t i c T ’ )
NIJM (n u mber)
N (noun)

(ii) I l’x i( ;at  I cut t i r e s

DIR (t i i rect R) nr l )
LOC (locational)
SUF3NUM (subordina t ion h t m l )  a’ r
It N SI II ( nra rk s I ‘irsi’d verbs)

L



(iii) Event Ca tegory  Features:

ARRIVI
CONTINUE
DI I’AH l
DEPLOY

A portion of the lexicon is given in figure 4-2 , and a complete listing is given in Appendix
C.

:: Ft I I I  [ N ~-~O J .;
:: I L l  W ~ VO I HANS TINSEL ) DIR FLIGHI ]

II IUIII [ N SO NOM/
IL lUll 15 N NOM/ 1

:: I lOGGER [ N N~~ 0 ACRA I I j . ;
FODl)E lIE N NATO ACRAFT ] .;
I Oil OWING [ S .ONJ 1FOR [ PHI I’

:: FOUR { NUM j -
FRI SCO [ N NA 1O A CH AF 1 j  .;
1 ROM [ P R E P j

:: UI NI RAL [ ADJ ]
:~ GROUP N J . ;

I igmi rt ’ 4— 2 . Sample Fexical Entries

4.4 The MATRES II Parser
4.4. 1 General /~ ‘sr r ip f ion .  lhe MATRES II system uses an augmented transition network
(MN) parser based on Woods (19(0 , 1913), The general features of AT N parsers have
boon discussed I i i  detail in previous OSl reports (RAD C-1R-75 , RADC-TR-1I- 194). In
this section we rev i ew a few of these features with particular attention to their Imple-
mentat ion in the MM HI S II •sy~;t i’m.

An ATN grammar , eri iists of a f iu i t~ set of s ta tes  connected by labeled directed arcs.
Associated with each ai~ a a set (possibly null) of conditions and actions. the arc
represents a t ra nsit ion from the s t a t e  at Its tail to the state at its head, which may be
made if t Ire appropriate condition s ,mre mcI When such a transition is made , the actions
associated with that are ,ir~’ P xe ’c t i tod ,

In addition to the above e i , i i r p tn r i i n it s , there IS also a push—down store (to be explained
below in conIheet on with PSII arcs ) and a su s t of reg is te rs . Including the special register
*, which usually or i t a i t s t li&’ current input symbol of the string being par’ed.

An input str ing a pa ‘c i’u ’.i’ f r o m  l e f t  to r g u t  , bepalnlrig at the lef tmost symbol of the
str inq rin d a d,’ ’ ;I( ll i t it  i i i  i,i,t,al s t a t e  As t r a t r s i t i - ,irs art ’  made through t he  net , the input
string is advanrr:u ’d . SI) tSi, it  (fit ’ i im rreni f  input symb 1 is in turn the first symbol of the
Input string, t in’ second , a n t  5 )  cii. A st ilt once is accepted when a final state , an
empty push—down ‘~ tnr ‘. - i nn ! tin’ taid of tf le input str in g are all achieved simultaneously.

I - - 
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At this point the eader may wish to refer to the diagrams of the A 1N grammar given in
fIgures 4-3 through 4-23 , and t h e  grammar listing given in Appendix D.

4.4.1.1 Arc lypes. there are five different arc types in the MATRES II grammar. The
operation of these arcs is described informally in what follows. For a formal definition of
the MATRES II grammar language , see part II.

A CM arc may be taken it the current input symbol belongs to the category (or
catego~-les) specified by the arc label (and If the condition associated with that arc is
satisfied). For example , a transition via an arc labeled ‘CAT [ ADJ ]‘ may be made only if
the current input symbol belongs to the category A DJ (i.e., has the feature ADJ) . When
a transition is made via  a CAl a rc , the input string is advanced to the ne xt symbol.

Transition via a Will) arc Is permitted Just when the cerrent input symbol is identical to
the word specified by the arc. For example , an arc labeled ‘WRD “ BY” may hi’ taken
only If the current input symbol is ‘BY ’. The input string is then advanced to the next
symbol.

A TS I arc may be taken it the the condition associated with that arc is satisfied. Condi-
tions are described In more detail in the next section , bu t  an example should suff ice to
give the general idea. Transition via an arc labeled ‘T ST * ~ N J * [ A DJ ] OR ’ is permit-
ted when the contents of the register * (the current input symbol) is a member of either
the category N or the category ADd. Ihe Input string is advanced to the next symbol.

A PSH arc transfers control to (lit’ s ta te  named by the arc label, while the state at the
head of the arc is saved on tire push-down store. For example , the arc ‘:PSH TO NP/ =)

S/SUBJ ,,‘ has the ef fect  of transferring control to state NP! and placing state S/SU BJ
on top of the push-down store. When a POP arc is taken , control is transferred to the
state at the top of the push-down store , and that state is removed from the push-down
store. PSH and POP arcs do not advance the input string.

A JUMP arc permits a transition to the state named by the arc label without advancing
the Input string. For example , t h e  arc  ‘:JUMP S/OBJ .

‘ transfers control to S t a t e  S/OBJ
with the c u r r e n t input symbol remaining the same.

4.4. 1.2 Condit ions . A condition may be used to test the contents of a reç i~sti’r for a
given feature , numerical value , or lexical item. For example , the condition ‘* [ III I PRO 1’
is satisfied just when the current input symbol has the feature RELPHO . and the a r c
‘:PSH * [ RELP RO ] 10 Hf ~

) POSIMODS/P .,
‘ may be taken under exact ly  the same

circumstances. The condition ‘PASSIVE GETR 1 =‘ is satisfied just in case the con ten ts
of PASSIVF is I , and t ho cendit ion ‘* “ BY” ’ is satisfied just when the current input sym—
bol is the lexical item ‘BY ’
Conditions may be formed by combining tests of the sort described above with t he
Boolean ope ra to r s  ‘ANt) ’ and ‘OR’ . I or example , the condition ‘PASSIVE GE 1 H 1 = * BY”
ANt) ’ is sat isf ied JUSt in ISISI’ the contents of F’ASSIVF is 1 and the current input symbol
is ‘ElY’ .
4.4 . 1.3 lIch ens. I Iii’ ii(’litiii f i u i i ct o r s  ‘SI TB’ and ‘UI III ’ are used for filling r e e l s ?  e r a  and
retrieving liii’ contents of r ‘g is t  e r a , respec t i vely. F or example , t he  a c t i on ‘* PHI P1)0
Si I l l ’ s to r e s  t I l t ’ cur, i’ rit input symi na l ni t t i i ’  reg is ter  PRF- PRG.

The structur u ’— hiu i ldnr ig fu rir ’tor  s ‘ADI)I 51 ’ and ‘NODE ‘ art ’ used to build lists and nodes .
respect ive ly.  I or example , (hi’ ui - I  ion ‘* SENT ADDI 1ST ’ takes f l it ’ contents of thp reg is-
ter * and u n i n t .  it (~ the list SI NI . 1 lie action ‘PRFPRG GI 111 OBJ G[’[R PP NO[) I ‘ builds a

L— 
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two—bra nched m o m ’  nr t n , ’ ln ’ l  ‘PP’, the first branch of which points to the contents of
PREPIIU and the second of which points to the contents of OBJ. Notice that the functor
‘GET H’ is used ten i en In l vi’ the co rn ten ts  of the ro ’g ist c r5.

tnt conn ection wi t h  P511 m d  POP arcs win must distinguish between “pro—actions ” and

“post—action s ” A p re ’  - ac t io -iri omi a P511 ate is executed before control is transferred to
the sta t e  n amed on tin’ arc label , while a post—act ion is t ’ x u ’ c tj t t ’ d  when control is

“popped” to the at i t t  rnan icd ml t iit’ head of (lie PSH an c - For example , when a transi-
tion is moth ’ via the a t e  ‘:PSH PASSIV E SENOR JO S/VG * St NI ADDI 1ST > DCL/S ,,‘ , t he

ac tion  ‘PASSIVE SI NOEl ’ (to be explained below) is ex e i aj t e ’d befo re computation begins
at state ~

-, V U. liii’ n -l ion ‘* SI- NI ADI)l IS1 ’ is executed when control is popped to
s ta te  PCI /~~

- . It should be mentioned he re as well that upon returning from a “push” , the
reg ister * t:t’r ’t :r i rrs whatever  structure is n amed by the preceding POP arc. For
instance , if in the example given above control ha d  been popped to state DCI/S by the
arc ~POP St lit ,J UI JR VP OF JR S N0I)I ,,‘

, (lien * would contain a two—branched node
labeled ‘5 ’, a rid t ln i :. is t l~~’ s Ir  uc t i i r  e which would added to the list SI NI by the post—
action ‘* SI NT A1)Dl 151’.

The functors ‘St NOR ’ and  ~5? N I  n~ 
‘ a re  used to send a value to a register or a list at a

lower level of computat io i i  For en ~ n irrpl& ’ , when a transit ion via the arc ‘:PSH VMODS
SE NDL 10 VM / = ~ S . ’ S ,,

‘ is urn ? , ’ , ‘ n u npi n? ,r t  cmi begins at s tate VM/ with the list VMODS
containing en Xii ’ t ly wh~ t it did it Iii’ s ta te  from which the push was made (norm ally lists
and registers or en 01:1 1~~ ’, upon ‘ n ’ t r  y m ite a lower level of computation). ‘SENDR’ and
‘SENDI ‘ are ua,’d only is pre—act ie r is  on i’Sll arcs.

The functor .s ‘HI I H’ a o l  ‘HI IL - r e  used only as post—actions on PSH arcs ,e and are
o:omp lt’uieii t i  r’~ to SENI)Il ’ -i in ‘ 

~~~ NIh ‘ in n thiit they r r ’t r ieve n cq mst or arid list values from
a lower level i n? ciniripi~ I ,itnun at the time of a pop (rem that lov e ’? .  Consider , for example ,
the arc ‘PSI-I V MOl~~ 51 NOt T O ‘- M - ’ VMODS RI T I )  S/ S  ,,

‘. Upon popp ing to state S/S ,
VMO DS conta ins wl i , ite ’ve r I -e n t , r i n n ,’ i  L net r r t ’  the push to VM/, inn addition to whatever
was added te ‘I ,iI the i’v e ’? nil V M .’

‘J. ’J . , ’ l f n , ’ P~i r ’ - o n ~; Strategy. In t is  a, ’ - t n o i r  a s t ’ n ies of examples is used to describe the
manner in which c e n t  I fl 1r,iir~nn , it i ca l  o i r s t i t i i e ’nts rio’ ‘recessed by the MAIHES II A T N
parser. The toll - .~~

- ig rn ‘ t , l  ion f -  ‘r output at ii ’t i ires is employed throughout: l ist  ele-
ments nil en ~ircknsi ’ l i i i  :o~iami en b r a c k e t ’ , ar id s, ’ i ’a r r i t t ’d  by commas. The entities pointed
to by (he branin ;?n ’’ ; of a node at en t ir - l ra , ’d icr par e r r t ! r t ’s t ’s an rd separated by ci’nliiias ,
with the node i i ?  - ‘ I  pr t ’ ced i r ng  the Ii’ f t  p.u r t n t  I res iS. Lexic a l  units are enclosed in single
quotation nrnor kr.

4.4.:- ’. 1 The 1) ,’ ‘1,1! ,it n w e ’ ~‘m ‘ ‘ r t m ’ r S  s ’ . T t ie ’ t r . i r rs i t  nil network for dec larat ivens (see Figure
4—3 and A r ri’ , i~~. 0) ,ieee ’ln t a ’.m ’ m I n u s ’ ’  ,ni ls lst in q of a simple se n t e r ren ’ followed
optionnll~ by a ,i’ , t n ’ nr :n ’ n ’O l~ i~n ’ t rn im i  and e ither a n o t h er simple sentt ’nce or a noun
plnr i’;n - It r m ’ t u i rn s a Ii .? havi ’ ’~n is Its f i n s ?  member an S (sentence) node’ , which may be
followed by ,i s e r n t t ’ i s - e  ‘ o r r t I l I r s t R i l i  ,uini t ’ i t l r e r  another S node’ or an NP (noun phrase)
node. For n ’ x - m n i pl’ . ,~:j , ’’i ( I ) .  (lie lt ’c l, inn i l iv e  n e t  rt ’t iu rnis tIn’ structure given in

(1) LIII Al l  ~ ‘. 
- RA P I WI Ffl I NI1O( li HOME BAS E Al 1 FR

(.ONI) i i I N - , n) P! RATI O NS OV I II TIlL Fl[Ei SI A .

(2) [S till A IHL I lAI  I WI Hi 1 NIlOl.l T I  1IOMI ItASl ),
‘A! IT fl’,
S(CONI) iJ I lNo ,  i)I’I ~~~ . n N ~-~ ‘VI H t i l l  RI l’i SI -A ’II

t~
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(1) is parsed by the declarative net as follows:

4.4.2.1.1 State D CL/.  At state DCL/ (the initial state of the ATN parser) arcs 1 arid 2
are attempted , and both fail. The condition on arc 1 requires that the contents of the
register REt F be 1, which is the case only when a relative clause is being parsed. Simi-
larly, the condition on arc 2 is satisfied just when a reduced relative clause is being
parsed. Arc 3 succeeds , and control is pushed to the sentence net at state 5/ . ‘ T H E

AIRCRAFT WERE ENROUTE HOMEBASE ’ is recognized as a sentence , and an S node is
returned to the declarative net where it is added to the list DCI - Control then passes to
state DCL/S with ‘AFT ER’ as the current input symbol.

4.4.2.1.2 State DCL / S.  At state DCL/S , arc 1 is taken , since ‘AFTER’ has the feature
SCONJ (sentence conjunction). ‘AFTER ’ is added to DCL, the input string is advairce d to
‘CONDUCTING ’, and control is transferred to state DCL/CONJ.

4.4.2. 1 .3 State DCL/CONJ. Arc 1 at state DCL/CONJ succeeds , since ‘CONDUCTING ’
has the feature PRESP (present participle). Control is pushed to the sentence net at
state S/SUBJ , and ‘CONDUCTING OPERATIO NS OV ER THE RED SEA ’ is recogrii.’t’d as a semi-
tence (i.e., one with a null subject). Art S node is returned to the declarative net and
added to the list DCL. Control then passes to state DCL/S with the end-of-sentence
marker as the current input symbol.

4.4.2.1.4 State DC/ /DC!. This  t i me  arc 1 at state DCL/S fails , so arc 2 . a j ump to
DCL/DCI. , is taken. At state DCL/DCL the list DCL , which has the form given :i (2) . is
popped.

To take another example of a slightly different form , consider (3).
(3) THE AIRCRAFT W ERE ENROUTE IIOMELIASE

AFTER OPERATIONS OVER THE RED SEA.

In parsing (3) , state DCL /CONJ is reached with ‘OPERATIONS ’ as the current input sym-
bol. This time arc 1 at DCL/CONJ fails , since ‘OPERATIONS’ is not a present participle ,
and arc 2, a push to the noun phrase net , is taken. ‘O P E R A T I O N S  OV ER T H E  R E D  Si A ’ is
recognized as a noun phrase, and ann NP node is returned to the declarative net acid
added to DCL. The list popped at state DCL /DCL will have the form given in (4).

(4) [S(THL AIRCRAFT WERE ENROUIE HOMEBASE),
‘AFTER ’,
NP(OPERAT IONS OVER THE RED SE A)]

4.4.2.2 The Simple Sentence, The sent ence grammar (see Figure 4-4 and Appendix D)
accepts sentences composed of subject , verb group, direct object , complement , and
various adverbial post modifiers. It returns a node labeled ‘5 ’ which has f ive bram iclit ’s
The first branch points to the logical subject , the second to the verb roup. (lie’ t h u d  to
the direct object , the fourth to the complement and the f i f t h to a list of “verb n:ocinl lens ’ .
Given (5), for example , the sentence net returns the structure in (6).
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(5) AT 0200Z 21 F E BRUA RY THREE EGYP T IAN AIRCRA FT FROM RG T
X84 12 WERE CONE)UCTING OP ERAT IONS OVER THE RED SEA.

(6) S(NP(THREE EGYPTIAN AIRCRAF t FROM RGT X B412),
VG(W ERE CONDUC I ING),
NP(OPERATIONS) ,
0,
[AT 0200Z , 21 FEBRUA RY , OV ER TIlE RED SEA])

(5) is parsed by the sentence net as follows:

4.4.2.2.7 Slate S/ . F rom state S/ , control passes via arc 1 to state PP/ , the initial
state of the prepositional phrase net. ‘AT 0200Z’ is recognized as a prepositional
phrase , arid a PP node is returned to the level of the sentence net, where it is added to
the VMODS list. Control retur n s to state SI, w i t h  ‘21 ‘ as the current input symbol.

Back at state .‘/ , another push to the prepositional phrase net is attempted via arc 1,
but this time the push fails. Arc 2, a push to the date net , is attempted , and succeeds ,
with ‘21 FEBRUARY ’ being recognized as a date. An appropriate structure is returned to
the sentence net , where it is placed in the VMODS list. Control passes again to state SI
with ‘THREE’ as the current in put symbol. p l
Arcs 1 arid 2 at state SI are attem pted in order again , arid both fail. Control passes via
arc 3, a jump arc , to s ta te S/ PP. lhe current input symbol is still ‘THREE ’.
4.4.2,?.,-’ State ~S/PP. At s ta te  S/PP , a push  is made to s ta t e  NP!, the initial s ta te  of
the noun phrase net. ‘TH RE E EGYP1 IAN A I R C R A F T  FROM RGT X B4 12 ’ is recognized as a
noun phrase , and an NP node is built arid retoj rr)ed to the sentence net , where it is
stored inn the register SUBJ. Control then passes to state S/SUBJ with ‘WI RI ‘ as the
current input symbol.

4.~.’1  2.3 State S/ SL/ BJ. T he arc at s ta te S/SUBJ is a push to the verb group net.
‘WEi~c CONI)IJ C TING’ is recognized as the verb group, and a VG node is returned and
stored inn register VGRG. Addit ionally, the registers PASSIVE and VHRG are raised by the
post-actions PASSIVE RETIT and VHRG RFTR from the level of the verb group net to that
of the sentence net , inn order that they may hi’ used to perform tests on the ’ arcs at
state S/VG. I lie value of I’ASSIV I is either 0 or 1 according to whether t h e  sentence is
active or passive (inn the case ’  of (1) t i r e  value of PASSIV E ms 0), and VFIRG conta mnns t Ine
verb head.
4,4.2.2.4 State S/V a.  From state S/SUBJ control passes to state S/VG with ‘OPI RA-
TIONS ’ as the curren t input symbol. Arc 1 at S/VG is a push to the agent net , with  the
condition that t h e  contents of PASSIVE be 1 and th at the current input symbol be ‘BY ’.
This clearly fails , as does arc 2, which also requires that the contents of PASSIVE be 1.
Arc 3 is a push to the .simple noun phrase net (state SNP/), with tine condition that the
con tem nts of Passive be 0 and that the contents of VHRG have the feature TRANS (tran-
sitive) ‘CONDUCTING ’ is tr ansitive , so control transfers to state SNP / . ‘Opt RATIONS ’ is
identif ied as a simple r e n o i r  plir ,ist ’ , and an NP n ode is built and returned to t ire ’  se ’ r i t i ’ r nce ’
net , where it is stored rn the reg ister 011.1. Control then pass e ’s to s t a t e ’  S/OBJ with
‘OVER’ as thti t: i ,rrn’ rit in pu t symbol.

4,4.2.2,6 State S/08J. Th e ’ a rc it s t a t e  S,’OIl,l is a push to the verb modifier net , so
control 1)11550 ’s to s t a  t o ’  VM/. tine’ pre —nic tu om n on th is arc sends the list \-‘Mi ~0S , which
already contains ‘Al 1)200/ ’ arid ‘ .‘ 1 F F BRUA I7Y ’, down to the level of the v u ’ rb  moth ? no r
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net. ‘OVER TIlE RED SEA’ Is recognized as a verb modifier (more specifically, a preposi-
tional phrase) and added to VMODS, which is raised to the level of the sentence net by
the post-action VMODS RETL, Control then passes to state S/S.

4.4.2.2.6 State S/S. The pop arc at S/S builds a five-branched node labeled ‘S’. The
first branch points to the contents of SUBJ, the second to the contents of VGRG , the
third to the contents of OBJ, the fourth to the contents of COMPL, and the fourth to the
VMODS list,

4,4.2.3 The Noun Phrase. The noun phrase grammar (see FIgure 4-5 and Appendix D)
accepts complex noun phrases with pre and post head modifiers , including adjectives ,
prepositional phrases and relative clauses (both full relatives, I.e. those that contain
relative pronoun, and restricted relatives. It returns a four-branched node labeled ‘NP’.
The first branch points to a determiner phrase, the second to a list of pre-head modif-
iers, the third to the head noun, and the fourth to a list of post-head modifiers. Given
(7), for example, the noun phrase net produces the structure given as (8),

(7) THE FOUR SR-71 RECONNAISSANCE AIRCRAFT FROM REGIMENT
XB41 2 WHICH DEPARTED HOME BASE AT 0200Z WERE ENROUTE...

(8) NP(DP(THE FOUR) ,
[SR-71, RECONNAISSANCE ].
N(AIRCRAFT),
[FROM REGIMENT XB4 12, WHICH DEPARTED HOMEBASE AT 0200ZJ)

(7) is parsed by the noun phrase net as follows:

4.4.2.3.1 State NP!. At state NP/ control is pushed to state SNP/, the initial state of
the simple noun phrase net. In our terminology, a simple noun phrase is one which has no
post-head modifiers , i.e., one which consists of at most a determiner phrase , a list of
pre-head modifiers , and a head noun. ‘THE FOUR’ is recognized by the simple n oun
phrase net as a determiner phrase , ‘SR’-71’ and ‘RECONNAISSANCE ’ as pre-head modif-
j ets, and ‘AIRCRAFT’ as the head noun. These structures are stored in DPRG, PREMODS ,
and HNRG, respectively , which are raised to the level of the noun phrase net by the
post-actions on the push arc. Control then transfers to state NP/SNP, with ‘FROM’ as
the current input symbol.

4.4.2.3.2 State NP /SN P. The arc at state NP/SNP is a push to the post-head minodifier
net. ‘FROM REGIMENT XB412’ and ‘WHICH DEPARTED HOMEBASE AT 0200Z ’ are recog-
nized as post-head modifiers and added to the list POSTMODS , which is raised by the
post action ‘POSTMODS RETL’ to the level of the noun phrase net. Control the m passes
to state NP/NP with ‘WERE ’ as the current input symbol.

4.4.2.3.3 State NP/NP. The pop arc at state NP/NP builds a four-branc ined node
labeled ‘NP’ The first branch points to the contents of DPRG, the second to the list
PREMOOS, the third to the contents of HNRG, and the fourth to the list POSTMODS.

4.4.2.4 The Verb Group Net. The verb group grammar (see Figure 4-6 and Appendix 0)
accepts the main verb , its auxiliaries and any associated evaluative adverbs. It returns
a node labeled ‘VG’ which has four branches. The first branch points to a list of evalua-
tive adverbs (eg. ‘POSSIBLY’ , or ‘PROBABLY’), the second to the verbal auxiliary (also a
lIst), the third to a copula, and the fourth to the verb head. Given (9), the verb group
net returns the structure in (10).
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(9) ...HAVE POSSIBLY BEEN CONDUCTING I-LIGHTS OVER THL RED SE A.

(10) VG([’POSS IBLY ’],
[‘HAVE ’,’BLEN’],

‘CONDUCTING’)
(9) is parsed by the verb group  net as follows :

4.4.2.4. 1 State VG/ .  The arc at state VG / is a push to the auxiliary net. ‘HAV E’ and
‘BEEN’ are recognized as duxi liary elements arid placed in the list AUX , and the evalua-
tive adverb ‘POSSIBL y ’ is placed in the list ADV BLST. AUX and ADVBLST are raised to the
level of the verb group r iot  by the post-actions AUX RETL and ADVBLST RE IL, and control
passes to state VG/AUX with ‘CONDUC I ING’ as the current input symbol.
4.4.2.4.2 State VG/IUX. Arcs 1 and 2 test for the features COPULA and BE , respec-
tively, and both fail , since ‘CONDUCTING ’ has neither of these. Arc 3 succeeds , and
‘CONDUCTI NG’ is stored in the register VHRG. Control then passes to state VG/VH.
4.4.2.4.3 State VG/VH. The pop arc at VG/VH builds a four-branched node labeled ‘VG ’.
The first bnanch poilits to the u~ t ADVBLST , the second to AUX , the third to the contents
of CPRG (which in this cinse is empty ) , and the fourth to the contents of VHRG.

For (11), the verb group net returns the structure given in (12), artd the parsing
proceeds as follows.

(11) ...HAVE BEEN AC 1IV E OVE R THI HID SEA.

(12) VG( [],[’HAVE’], ’BEE N’ ,’ACTIV E ’)

4.4.2.4.4 State VG/ .  This time the push to the auxiliary net returns an AUX list with
‘HAVE’ as its only member , ‘BEEN’ is determined not to be an auxiliary element , since it is
not followed by a progressive verb form. Control passes to state VG/AUX with ‘BEEN’ as
the current input symbol.

4.4.2 .4.6 State VG/�I UX. Ar e 1 at state VG/AUX tests for the feature COPULA. ‘BEEN’
has this feature , so the transition is made to state VG/COP and ‘BEEN’ is placed in the
register CPR(~. The current input symbol is now ‘ACTIVE ’.

4,4.2.4.6 State VO/ COP. Arcs 1 and 2 at VG/COP test for adverbs , so both of th ese
fail. Arc 3 succeeds , so ‘ACTIVE ’ is placed in the register VHRG and control passes to
state VG/VH.

4.4.2.4. 7 State ’ VG/VH . The pop arc at s tate VG /VH builds the structure given In (12).

As a final example , conside ’r the verb group in (1 3).

(13) Fl IGHTS HAVE B I E N  CONDUCTED BY AI RCRAFT FROM RGT XB4 1 2
4.4.2.4.8 Stafn ’ VG/. The push to the auxiliary net retuns an AUX list containing ‘HAVE ’.
Control passes to s ta te  VG/A EIX with ‘BE-UN’ as the current input symbol.

4.4.2.4.9 State VG/ ~ UX . Since ’ ‘HI I N ’ has the featur e COPULA (although in (13) it is not
used as such), a rt  1 S in ci pe ’ (Is antd ‘BEEN’ is stored in CPRG. Control passes to state
VG /COP with ‘CONDUCT ED ’ as the current input symbol.

_ _



4.4.2.4 .10 State VG/COP. Arcs 1, 2 and 3 at state VG /COP each fail , since ‘CON-
DUCTED’ is neither an adverb nor an adjective. The parser backs up to state VG /AUX ,
undoes the action on arc 1, and attempts arc 2 with ‘BEEN’ as the current input symbol.
Arc 2 succeeds, so the transition is made to state VG /BE with ‘CONDUCTED ’ as the
current Input symbol.

4.4.2.4. 1 1 State VG/BE. Arcs 1 and 2 at VG/BE both fail. Arc 3, which tests for the
feature PASTP (past participle), succeeds, so ‘CONDUCTED’ is stored in VHRG and PAS-
SIVE Is given the value 1. Control passes to state VG /VH with ‘BY’ as the current input
symbol.

4.4.2.4.12 State VG/VH. The pop arc at state VG/V H builds the structure given in (14).
In addition, the contents of PASSIVE will be used at the level of the sentence net to
determine that (13) is a passive, and the sentence net will thus return the structure
given in (15).

(14) VG( [],[’HAVE’],O,’CONDUCTED ’)

(15) S(NP(AIRCRAFT FROM RGT XB412),
VG(HAVE CONDUCTED),
NP(FLIGHTS),
0,
[1)
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4.5 Template Descriptor Selection: Methodological Issues
ThIs section provides a general discussion of some fundamental Issues pertcining to the
selectIon of descriptors for templates relating to any subject domain in general , and
lists the descriptor system developed so far for the domain of airc raft activities in p ir-
ticular.

4.5. 1 User-Related Considerations

The set of properties used for the description of events relat ing to a particular subject
domain must answer the what , who, where , when , arid why iriforniation questions
relevant  to the  analys t ’s task. The def inition of the descriptors and their organization,
therefore , must be consonant with the analyst ’s view of the world.
In general, any number of propertIes may be specIfied for any gIven class of entities.
However , not all propertIes have the same degree of usefulness in a given context. The
properties selected for inclusion in a template must , therefore , be sensitive to the ti sk
the template Is designed to support. Ac cordingly, the first criterion for selection is that
of relevance. Templates must include only that information which is particularly relevant

• and useful to the task at hand, and not the full range of facts one might find in an ency-
clopedia.

4.5.2 Linguist ic Cons iderations.

In this subsection the discussion wilt evolve around the linguistic criteria for descriptor
selection.

Broadly speaking, descriptors fall into two major categories those that involve “deep
case ” re la t ions , and those that iiivoI~ e inferences of a special kind. “Deep cases ” are
binary relations which Specif y an event regardless of the surface realization of that
event description as a senten~~ or a noun phrase. The descriptors involving inferences
are restricted to those which have to do with the relations of entailment and presupposi-
tion.

Descriptors selected for inclusion in templates within a particular subject domain are
pragmatIcally determined from a linguistic and logical analysis of a representative sample
of Intelligence messages. The criterion used for selection of “deep case ” re la t ions  is
the following:

A deep case is a relation whose value is usually
specified for a given event type.

Thus, flight reports include a description of the object(s) which is (are) doing the flying
and frequen ly mention other relations such as the source of the flight, its direction, the
area overflown , the destination, and the mission. These properties are assigned t he’

— status of “deep cases ” in the sense specified above.

Pilots, how ever , or navigators , are very seldom mentioned in flight reports. They will Pe
treated d i f fe r ent ly, namely, they wIll be regarded as presupposition of the flight event.
The notions of entailment arid presupposition are explicated in a later st ibsection. The
next section discusses the notion of “deep cases ”, which is the basIs for defining intra-

- 
1 template relations.

3 

4.5.2. 1 The ‘Deep Case ” System.

A “deep case ” is a binary relatIon wlrL~h holds bet ween a predicate (usuaI~y, but not
necessarily, realized as a verb) arid one of its arguments. Deep cases are used both in

L ‘~~~~~~ 
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accounting for the relative acceptability of natural language sentences arid in xplaiiiinçj
how si-i Intelligent system might understand language. This is done lii terms el a “ c is e
structure ” and “selectional restrk tions”. The case structure for any pre!dicat~ is the’
set of cases allowed in a description of that predicate. Select ional restr ictios- i ; then
place semantIc constraints on the objects which fill the case slots.

Each predicate has a number of cases. These may include adverbial modifiers , temporal
Indicators, and other propositions as well as the usual nominal cases. For example , t he
case structure for the predicate “be enroute” might be (Object , Oestination), where
each case may appear at most once. Object represents the notion “The thi’iq ~-hich i~en route”. The meaning of Destination is clear. Both the Object and the Destination must
be present in the message text;  i.e., they are obligatory cases which are reqi’irt ’d b r
the event description to make sense.

Other predicates may have allowable cases which need not necessarily be reali:’ed in
the text. Such a predicate is “fly ”, for which only the “thing which is doing the flying” is
obligatory. Ifie other allowed deep cases , such as Source , Dest ination , Fx t en t , Dircc-
tion, Area , Mission, etc., are optional, i.e ., they may or may not appear in the actual text.
Any of the following sentences satisfies the descriptor structure for the fly tem plate.

The aircraft flew south.
The aircraft flew to Mombasa.
The aircraft f lew Irons London to Cairo.
The aircraft flew as far south as Cairo.
The aircraft flew a reconnaissance niission over Uganda between
0012 and 0036 on 26 Feb 1975.

However , if the f irst and last sentences refer to a sIngle aircraft , based on oi:e. eness,I~,ci
or more than one, the additional Information provides material to complete the empty
descrIptor slots in the ‘f l i gh t ’ template representing that event. Selectional restrictions
vary from global constraints on the use of a case (e.g., “every agent must be animute ”)
to local constraints on the use of a case wIth a particular predicate (e.g., “the destina-
tion of a flight must be a geographic location such as a country, a city, or an airport”).
The degree to which a case-based theory ca n account for the correct interpret~itior of
text depends upon the way the cases medIate between surface forms and corrcepti i, i I
structures. The transformation of surface f orms into meaning represcntatM:ls i~ t i s ’

• funct ion of the procedural component of templates , wh ch was described in S~ b-in

4.5.2.2 Pr€supposl tion and Entailment.

Presuppositioo and entailment are a subclass of inferences which appear to be closely
connected with the structure of language. They arise from two main structural sources :
one, the semantics of partIcular words , and two ,from the syntactic (or re lat ional) s t ruc—
ture of sentences.

- - 4.5.2.?. 1 E ntailment. A proposition P entails a proposition P’ if and only if in every con-
text in which P is true , P’ is also true. For example , a plane cannot fly ur:k’ss it Ii

taken of t , cannot land uiile’s:, it has been flying, must be in flight it it has t , t i ,i’il oil a’ -d
has not landed or been destroyed. Thus a tak e— of f  event entails a sut’s ’q~ient fI’qht ,
while a flying event entails a precedin ) take—ot t .  A lancl irip eve’it enta ils - ‘

flight , while a flying event entails a subsequent landing.

The above entailment relations are obligatory and spe:~ific to t he :espec~ice c v - s t
predicate , i.e. , a flight entails a previous take—off  because of the meaning ot “fly , wl’ In
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a landing entaIls a previous flight because of the meanIn g of “land” .

Such entailments predict the normal , expected, orderIng of events li-i the air activities
world. Any violation of these expectations can serve as a warnIng to the analyst that
some external le i c e  has altered the predicted course of events.

For example, If a plane which is reported In flight does not land within expected limits of
time , It may have altered course , may nave made a forc~~landing , or may have been des-
troyed. It Is Important that the analyst be alerted to any deviatIon from the expected.

4.5.2.2.2 Presupposition. A second, related concept is the notion of presupposItion. A
proposition P (logically) presupposes a proposition P’ if and only if P entails a P’ and —P
en tails P ’. Therefore , whether P Is true or false , P’ must be true If P is to make any
sense at all. It is clear from the above definition that all logical presuppositions P’ are
also entailnients of P. Presuppositions play an important part irs the meaning of many
words.

For example , in the air act iv i t ies domain, a flying event presupposes that the thin g which
does the flying is an aircraft. [ho presupposition is related to selectional restrictions
and Is incorporated In the specification of what may fill the Object slot of the FLY event.

Certain aspectuals (e ~ bo~ i nr , continue , end) are also associated with presuppositions.
For example , both the se iit e! i 1ce~ “the plane continued flying” and its negation ”the plane
did s,ot continue fl~~ iiiq p1 e .supposc that at some point the plane was flying.

The predicate ‘ i ~‘ t e r r i i ’ presupposes that the object which is reported to have returned
has been at that location before.

One of the important aspects of presupposition in ianguage is that it informs the reader
that the presupposition must be considered true. Thus , if some aircraft is reported to
have returned to its normal operating area , it must  be consIdered true tha t  some tinse
before its return it took off from that particular area. Even if the report were neg a t ive ,
I.e., stating that the aircraft iii question had riot returned to its normal operating area ,
the presupposition tha t  it had previously takers oft from that area remains true.

Thus , presuppositions and ensta llments add information which is conceptually associated
with some ent ity, b u t  is ve ry  seldom ment ioned  explicitly.

This fact can be ’ of assistance to the analyst in establishing the identity of objects
involved II • irIs i eported by d~t Icr ,  c i t SOUroCS is different ways , or p~~rIi~~pi-~ iii s~’o ’,~ins g
to establish links between e ’v e ’ ints which otherwise might appear unconnected.

The descriptor system for the air activities sublanguage then, Includes , in addition to
those disci isseid pre1vioilsl y, the two descriptors related to inferences , namely, entail—
ments and presupposition s.

4.5.3 Ttst ~ 1) t ’ .s r : r i i ~tor S~- .st ,’, ’i fo r the 12ircr ~ f t Domain table 4— 24 shows the descriptor
System so fa r iJ~ ve I~ pod I ‘i the air ac t i v i t i es  sublariguage.

I ,‘4
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Table 4-24. Air Activities Descriptor System
+ +

I A .  Motion r e l a t ed  d e s c r i p t o r s  I
I Agent An ima te  i n s t i g a t o r  of the  a c t i o n .
I Object The e n t i t y  that  moves or C 1I -I O �~CS o r  I
I whose p o s i t i o n  or ex i s t ence  Is be ing

descr ibed. I
I Source The loca tion of the object at the I
I beginning of a motion. I
I D e s t i n a t i o n  P r o j e c t e d  or actual  d e s t i n a t i o n  I
I of the object  at the end of the I
I mo t ion .  I
I D i r ec t i on  D i r e c t i o n  of m o t i o n  of object at time l
I of o b s e r v a t i o n .
I Path Path or area t raversed  during motion. I
I E x t e n t  E x t e n t  of m o t i o n .  I
I Limit Limit of motion. I
I Altitude Altitude of object at time of I
I observation,
I Region General location of the action.
I Status Begin , cont inue , end. I
I Time specification Time of observation or duration of I

the event.  I
lB.  Event re la ted  d e s c r i p t o r s  1
I Mission Purpose of flight. I
IC .  A i r c r a f t  r e l a t ed  d e s c r i p t o r s :
I Equipment
I Class I
I NATO designation I
I N a t i o n a l i t y  I
I S u b o r d i n a t i o n  I

Flomebase I
I Staging base I
I Set s p e c i f i c a t i o n  I
I C o n f i g u r a t i o n  I
ID. In f e r ences  I
I E n t a i l n s e n t s
I P r e s u p p o s i t i o n  I
I The l a t t e r  i n c l u d e  ob jec t s  normal l y assoc i a ted w it h some
I concepts bu t  very seldom mentioned , (e.g. , pilot , fu se l a~ e .  I
+ - -- - +
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1.0 Introduction

This section describes the implementation of the concepts of the f irst section , in the
form of the MATAL S II system. The following subsections describe the various com-
ponents of the system. In some places , references are made to MATAL S I, tl ie -’ productof the contract directly preceding the current one. The reader is referred to the finalreport of that contract for details.
Subsection 2 presents the data structures and algorithms for the sentence Input and
grammar processing vocabulary; this vocabulary is essentially an extensive modificationof the MA IRES I system. Subsection 3 describes the capabilities added in the area of
morphology. The implementation of the [AL evaluation process , including the abstract
machine which is the target language of ERL , is described in Subsection 4. The ERL
compiler , which is the only non-Forth module , is discussed in Subsection 5. The last
three subsections are intended as a guide to the Forth program files listed in AppendixA, and provide glossaries of the Words in those files.
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2.0 Design of Lexical and ATN Processors

2.1 General Principles

All operations involving addresses use a set of Words which expect addresses, even 4 f

the operations are simple; e.g. to increment an address p’ by ‘ n ’ words (bytes), ust’ p
n a+” (“p n \a+”), where “~~+“ and “\a+ ” are defined as:

:a+ 2* + ; : \ a + + ;

Note that these words are riot commutative , and expect the address on 20S.

Of course, any FORTH Word may be used as an action, but it should be re membered that
actions may have to be undone; therefore , action Words should not modif y storage out-
side of the context blocks.

For the purposes of defining structure , w e assume that structures will only be built and
examined, not modified or deleted; all dynamic storage will be released w he’ im a sentence
has been completely processed. Later enhancements may require a dynamic space rec-
lamatIon mechanism , but we don’t make any provision for that now.

2.2 Data Structures

All the following structures reside in block storage to provide for uniformity of address-
ing, since we use a 16-bit addre ..; for block storage similar to the one used in I&W II for
data base pointers; these pointers cannot be distinguished from core addresses by their
content alone.

The lexical unit , as defined below, is different from that of I&W 11; he re we treat dii’-
ferent senses of words having multiple senses as distinct lex ical units , arid use for ward ,
backward and alternate pointers to link units within the sentence , tnus cr eating a “t wo-
dimensIonal” list of lexical units for the sentence.

A lexical unit has a string pointer, a string length, a forward pointer (to the next unit in
the sentence) , a backward pointer (to the previous unit), an alternate pointer (to
the next sense unit for the current word or phrase), and a sense.

A register is empty or contains a pointer to a lexical unit or a list or a node .

A node has a label and one or more branches; a branch is en-pty or points to a lexical
unit or a list or a node; a label Is the name of a Word which contains a branch
count and the label name (in the format of an ERL functor literal; see t h e  section
on ERL).

A list has a zero branch count and a link to the first listel; a listel has a pointer to a lex-
ical unit or a list or a node , and a link; a link points to a listeI or is zero.

2.3 Action Definitions

The actions for l&W Ill are totally differ ent from the previous ones; for convenience , we

will repeat the syntax definitions from MATRES here , with new rules for declarations and
actions (note that “W’ represents a blank that must be present).

grammar ~:= ‘GRAMMAR W start-state-name declaration* state+ ‘~SFNDGRAM MAR’

start-state-name :: state-name

declaration ::= ‘~REGISTER~’ register-name I ‘V ~LlS TY” list-name number ‘~ LABEL~ ’
label-name

‘1 ~~
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register-name, list-name , label-name :: Word

state ‘:SW state- name arc+ ‘h;;’

state-name Word

arc :: ‘:WRD~ ’ “W string “ tail

‘:MEMW ‘(W (. “W string “ )+ ‘b)’ tail

‘:CAT W [ ‘ - ‘ 1 1$’ feature + ‘
~

j ’ tail

‘:TS [W condition ‘~~~ ‘W action* ‘~S~>PS’ state-name ‘$,,W

‘ :PSH~ ’ ~ condition ‘$~‘kS’ ] actio rm* ‘~ TOW state-name action* ‘
~~ - ) W  state-name

~~~~~~~~~ I
‘:POP$’ [ condition ‘

~~~
“

~~
,‘ ] action* ptr ‘

~~
, Y ’  )

‘:JUMPW state-name [ condition ‘$~~~
‘ ] action* I ‘~ A DVW I ‘~ RETW J ‘

~~ ,.W

tail ::~~ ~ condition } ‘
~~ !!W a~~tion* ‘

~~ => W  state-name ‘~ ,,W

condition ::~~ condition condition C ‘~ ANDW ~ ORW ) J condition ‘~ NOTW cond

cond ::= pos test Word 
.

test ::~~ [ ~
— ‘ ] ~“W s t r i n g  “ ‘ - ‘ ] ‘

~~W feature+ ‘~J’ $ ‘~ ftOS]W

action ::~~ Word ) ptr register-name ‘V S ET f ~$’ I register-name ‘~ GETR W ptr list-name
-t ‘V ,A DDLISlW ptr reqister-nani e ‘~ SI1NDR~ ’ register-name ‘kSRETRW list-name (

‘~ SENDL$ ‘~ RET LW )

ptr ::= pos J register-name ‘~ GETRY ,’ list-n ame ptr+ label-name ‘~ NODEW

pos :: ‘k~*W ! ‘$*÷ lW ! ‘Y~*- 1W register-name ‘~GETR~ ’

A “ptr ” construction returns to the stack a pointer to a lexical unit , a list , or a node; in
the latter case , the node is actually created by the Word NODE from the label and “p t r ”s
on the stack.  The label preceding NODE must have been declared by a LABII. declara-
tion w hich gives the number of pointers to take from the stack’ ; for example , the
declaration “4 ( ARF I rHIN~~”, together with the action ‘REG @ *+1 *-1 liST THING NODE”
creates a node label led THING with four branches , the first pointing to the list LIST , thc
second to the previous lexical unit , the third to the next lexical unit , and the fourth to
what REG points to . A pointer to the list is returned to the stack. Note that the order of
pointers in the no te is the reverse of the order in which they appear in the tex t .

ADDI.IST adds a ptr to the front of the specified list; thus , as with nodes , the elements
of the list will be in reverse order from that which they were added.

SETR is used to set a register to a value , and GETR is used to retrieve the value of a
register. G ET H may be used in tests , w ith  reg is ters  which point to lexic~il units

SENQA and Si NDt are used only in the preactions of a PUSH node. SENOR sends a value
to a register at flu’ level of the suboet (r e~iist~.’r s ae~i lists arc normally empty on e n t r y
to a subnet). S i mi l a r l y , SENDI sends the current value of a list to the suheet level

RETR and REIL are used only in t i re postact inirs of a PUSH node, and are compiementar~
to SENDIT arid .SF N OL . in that th~’y re t r i ev e  re’ j ’s t e n  and list values , respecti vely, from th e ’
subnet values at the time of the PC~i~.
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A POP arc must have a “pt r ” as its last (or only) action, whic h will cause the “pt r ” to be
assigned to * at the next level up.

2.4 Internal Structure and Algorithm Specifications

2.4. 1 Layout of Block Storage All the system structures except the compi ud ATN tes:du
In block storage to provide for uniformity of addressing, since we use a 16-hit a’ldross
for block storage similar to the one used in l&W II for data base pointers; these pointers
ca nnot be distinguished from core addresses by their content alone.

The first structure in block storage is the lexicon, starting at the block speci f ic~d by the
constant SLEX. The variable ELEX holds a pointer to the last byte of the lexicon. Next ,
starting on the next block boundary, will be the text of each input sentence , followed by
the chart for that sentence , and then the stack of state frames. The base block number
for all pointers except within the lexicon will be contained in the constant SBASE.

2.4.2 Structure of the Input Sentence As described below , each input sentence will be
read and stored in FORTH block storage in two parts: the actual character string
comprising the sentence , and a structure of entries corresponding to the lex ical units
(words or phrases) found in the sentence. Each such entry has the following structure:

item 
_______ 

Length
Address of cha’ -. cter string for unit 1 word
Length of character string (in bytes) 1 word
Pointer to next unit 1 word
Pointer to previous unit 1 word
Pointer to alternate unit 1 word
Feature ‘vector NWRD words

At the end of the list of entries Is a “pseudo- entry” consist ing of all zero entries except
for the previous unit pointer , to mark the end of the sentence.

This structure allow s for a list of alternate senses for a given word in the sentence, and
also for handling phrases. For example , it may or may not be appropriate to treat a given
sequence of words as a single lexical unit at a particular place in a sentence; with this
structure, w e could build, as alternates, both the lexical unit corresponding to the
phrase interpretation and the list of units corresponding to the string of words (although
we don’t do that in this system). We will call the structure built for a sentence the chart
of the sentence.

The following varIables are set to provide access to these structures:

TXTP points to the first character of the sentence text.

SENTP points to the first lexical unit of the sentence chart , and also mdrks the end of
the sentence text.

FRAMSTRT points to the base of the first state frame for the sentence , and also marks
the end of the chart for the sentence.

2.4.3 Text Input and Sentence Construction Text input is performed by the Word
GETTXT and its auxIliary Words. The FORTH Word WORD is used to get the next string
of nonblank characters , and CHKWRD strips of f trailing commas and periods , ~i’ii returns
an Indication If the punctuation was a per iod; this is used to terminate the sentence
text. Words will be separated by one blank , and a period set of f by blanks will be

~ 
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appended to the text (by TEXFIN).

MAKESENT makes the chart of the sentence, creating a lexical unit for each sense of
each word or phrase found in the lexicon, and linking them as appropriate. its operation
Is discussed in more detail in the next section.

2.4.4 ATN Processor - Data and Program Structures The ATN compiler produces a Word
In the dictionary for each state , having code structures for each arc; these are
described below. By “code” is meant a COLON-style sequence of Words implementing a
particular operation. Optional elements of a structure are delimited by square brackets -

-
. All states are encompassed in a scope block named “GRMDF” .

2.4.4.1 State Structure

State entry code
Arc structures for arcs of state
End-of-state code

2.4.4.2 Arc Structures (by arc type)
WRD, MEM, Arc entry code
CAT, TST Code for tests - leaves 1 or 2 truth values on stack

Code for ’!
[Code for actions]
Code for ) and state name

PUSH Arc entry code
[Code for tests
Code for !!]
(Code for preactions3
Code for TO and state name
[Code for postactions]
Code for =) and state name

POP Arc entry code
[Code for tests
Code for !J]
[Code for actions]
Code for returning to calling arc

JUMP Arc entry code - 3rd and 4th words are skip around state
name

[Code for tests
Code for I!]
[Code for actions]
[Code for ADV or RET]
Code for jumping to state

In all arc types, the first two words of the ”arc entry code” compr ise a word pointing to
the next arc (or to the end-of-state code), then the FORTH-style code word (a pointer
to COLON).

2- 5
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2.4.5 Operation of the ATN Processor The oper~ition of the ATN executive processor fo r
state-to-state transitions would be almost trivial were it not for the fac t  t Lat . for natural
language processing, the ATN must be considered n - .h’terirr nist re, For exam ple , it is
possible to have two arcs leaving a given state with the same tr~;ts but duf L’ re lt  desti -
nation states. As a result , it must be possible to backtrack along a path to a previous
state, undoing any act ions along the way.

In MATRES , this is implemented as follows: when an arc is successfully t aversed , the
Current computation context is pushed onto the dictionary , and a new context esta-
bu shed. Thus the stack of contexts describes the currently aet ive pith tiii’oi gli the
ATN. When the last arc in a s ta te is tried unsuccessfull y ,  b~icktracking is done by simply
popping the stack and restoring the previous context , which includes a specif ication of
the next arc to try in the (once again) current state.

The context referred to above , which will subsequently be referred to as a state frame
to avoid confusion with the linguistic sense of “context” , comprises a base pointer
(FRAMBASE) and a set of value cells associated with various item names. Each name is
defined as an offset from ti re base pointer by the ITEM defining Word. The dictiondry
pointer is kept pointing just past the current frame , and the base pointer is pointing to a
“hidden ’ cell containing the previous ba se pointer; thus a new state frame may be
defined by simp ly moving the base pointer to agree with the dictionary pointer and set-
ting the dictionary pointer abo.~e the ite m with the highest offset , and an old frame

- 
- restored by setting the dictionary pointer to the base pointer and restoring the base

pointer from the cell it points to. This scheme allows the dynamic addition of data to the
current frame by simply advancing the dictionary pointer.

The following data items are present in each stack frame:

STAR: special register , kept identi cal to LEX except on return from a PUSH

LEX: pointer to current lexical unit
- 

- 
STAA T: pointer to current state structure

ARC: pointer to current arc structure

ARCNO: current arc number within state; used f or trace printing

RETRN: contains the IC to return to on POP, and the base pointer associated with the
state from which the last PUSH was done

Register values and list heads are allocated above these items , followed by d y n a m i c
allocations of nodes and list elements.

The Word NEWFRAME is used to establish a new frame. It sets up a new state frame as
described above and copies all the previous item data into it. The complementary word,
OLDFRAME , restores the previous frame as described above.

The actual transition to a new state is done in two steps. First , the code doinq the tran-
sition, which has the name of the new state stored within it , calls t - ND SIA 1E , which ~inds
that name in the dictionary and returns its code word on the stack and in S~ AA1 . Next ,
a SKPTO is called, and it transfers control to the address on the top of t h e  stack. Ilote
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that this is done at the same level of the return stack.

2.4.5.1 Al gorithms f or A TN Processor Elements
Element Algorithm
State Entry Set ARC to first arc in state , go through ARC

Arc Entry NEWFRAME

If two conditions present , AND them;

If top of stack true, put poinier to next lexical unit on stack
(current unit if JUMP arc); if PUSH arc , set SNDP to k~p-of-
dictionary in case a SENOR is done;

If false , OLDFRA ME, set LEX to next alternate lexical unit (if no
next alternate , reset to first alternate , update ARC), go through
ARC

Top of stack-)LEX , get called state , go to it

TO Assign IC + 1 ‘ and pre vious base pointer to RETRN, clear registers
and lists , move in any SENDRs from top of dictionary, get called
state, go to it

POP Return Get IC and base pointer from RETRN, copy base pointer ’s registers
and lists, arc , state , and return data into current frame , TOS into
STAR , go to postactions through IC

End of State Treat like false branch of ‘ !

AN Start Set: LEX to first lexical unit, STAAT to ATN start state , RETRN to
ATN finish code; go through STAAT

I-. UN Finish Print structure in STAR if tracing; return to caller of PARSE

2.4.5.2 Code Structures for Tests Here we show the structures compiled for each type
of test in the arc condition section. In the case of multiple tests , two consecutive tests
will be followed by a reference to AND or OR. A capitalized word shown here means a
ref erence to the appropriate Word.

The Word SKIP causes the (C to be set to the contents of the following word , thus skip-
ping intermediate words. CMPWRO and NEGWRD compare the literal string pointed to by
lOS with the string from the lexical unit pointed to by 20S, and return true or false,
respectively. TSTCAT and NEGCAT cneck that the feature vector pointed to by lOS is a
subset of the feature vector in the ‘ .‘xical entry pointed to by 20S (i.e. that the logical
AND of the vectors is equal to the vector pointed to by TOS). [FOS] checks that TOS
points to the end-of-sentence lexical unit. LIT puts the following word on lOS. 

~~~~~~~~~ 
-
~~~~~
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WRD (“  string” and -“ string”):
SKIP 1 word
pointer to LIT word 1 word
number of chars. 1 byte
In string
char , string, with n bytes
padding if needed
LIT iword
pointer to number byte 1 word
CMPWRD or NEGWRD 1 word

MEM ( sequence of WRD tests surrounded by parens ):WRD entry n words, as aboveIFT 1 word
pointer past last WRO entry 1 word
<the above repeated for all
but the last WRD entry>
WRD entry n words

CAT ( [ features J and -[ features ] ):
SKIP 1 word
pointer to LIT word 1 word
feature mask NWRQ words
LIT 1 word
pointer to mask 1 word
TSTCAT or NEGCAT 1 word

End Of Sentence ( “[EOS)” );
tEOS] 1 word
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3.0 Morphology
3.1 General

Ultimately, we would ilke to Implement a fairly gener& morphographernic processor dkI~the lines of that used In the Kay or Wlnograd systems. The PATRICIA algorithm for ie~~~ i-cat Iookup might lend Itself well to that process. Also, the chart representation of tisentence would allow us to handle the phrase problem (e.g. whether to repre~~ i t“heavy bomber” as one lexical unit or two; with a chart, you can do both).
For the current contract, however, we have satisf ied ourselves with two lesser ext * :~slons to the l&W II approach: first , in iookup, we accept the hyphen as a legal w~~¼tseparator in lexical Iookup; I.e. If a lexical entry matches the Input string up to the ch~tracter before a hyphen, we call It a success, create a lexical unit for it, skip the hyphtm.and go on to attempt a match for the string following the hyphen.
Second, if a string doesn’t match any lexical entry, we use an FSA approach to matchuiq.This will be the subject of the followmg sections.
3.2 The PSA Matching Process
The Idea here Is to match the current word (or phrase) In the Input against a set ot p~~tterns represented as a finite state automaton (FSA). Each final state of the FSA Spi~&:~lies a feature vector In the same manner as a lexIcal entry. Thus, each pattern to~iidcorresponds to a feature vector , and a lexical unit is generated just as in the case t ~ilexical entry match,
3.3 Syntax of FSA
The syntax of the FSA is quite similar to that of the ATN grammar, a major differ. ;~~~~.being the form of the tests and the lack of actions on the arcs.

fsa :z ‘PATTERN$’ start-state-name state+ ‘$ENDPATTERN’
start-state-name : = state-name
state :: ‘:S$’ state-name arc+ $;;

state-name ::= Word
arc :: ‘:A$’ test ‘$ )~~‘ state-name ‘a,,’ ‘:F$’ test feature-sat ‘$U’

test ::= character-string *BLANN*
feature-set :: ‘[V,’ feature + ‘$J’

in this syntax , rather than having fitial states , we have “final arcs”, designated ~starting with “:F” rather than “:A” as Is the case with normal arcs. Thus, when the li~succeeds on a final arc, the FSA returns a match indication with a pointer to the asso~sted feature sot. The test is simply a list of nonbiank characters to be tested again tthe currant character in the string, or the Word *BLANK* to test for the presence of ~blank in the string.
As an example, the following FSA will look for numbers, and return the approprh,,~feature. Assuming four-digit numbers have special significance, I’, will make a spt~e Icheck for them and return an Indication when it finds one.
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PATTERN NO
:S NO
:A 0123456789 z) Ni

:8 Ni
A 0123456789 ) N2 ,,
:F *BLANK* [ NUM ] ,,
‘I

:S N2
:A 0123456769 > N3 ,,
:F *BLANK* [ NUM ] ,,

‘‘:S N3
:A 01234 ,6789 > N4 ,,
:F *BLANK* [ NUM ] ,,

:S N4
A 0123456789 => N5 ,,
:F *BLANK* [ NUM 4DIGIT J , ,
I,

:S N5
:A 0123456789 > N5 ,,
:F *BLANK* ( NUM ] ,,

ENOPATTERN

3.4 FSA Program Structurss

The FSA Is called via the Word “FSA,” which returns either zero for no match, or the
pointer to a feature vector. The FSA state structures are much like the ATN state
structures, and are defined within a scope block named “FSADF”. The arc structures are
as follows:

Normal (:A) arcs:
Arc entry code
Code for test - leaves truth value on stack
Code for conditional transfer to specified state or next arc

Final (:F) arcs:
Arc entry code
Code for test
Code for conditional return from FSA with feature vector

3.6 Algorithms for FSA Program Elements

Element Algorithm

FSA Start Set FSAPT from LEXWRK, go to first state

State Entry Go to the first arc

Arc Entry Set NXTARC to address of next arc

Test Code Compare character pointed to by FSAPT against specified
character(s), return true or false
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If TOS true, advance FSAPT, go to specified state;
If false, go through NXTARC

( features ] If TOS true, return from FSA with pointer to feature vector;
If false, go through NXTARC

End of State Return failure (~O) from FSA

3.6 Integrat ion with Lexical Lookup
The addition of the FSA pattern matcher to lexical lookup has required some restructur-
ing of the l&W II lookup process. In order to assure that exceptions to patterns can be
entered Into the lexicon, the FSA Is tried only when the current string has failed to
match any lexical entry. Also, to allow for future restructuring of the lexicon for more
power or greater search efficiency, the Words used in lookup have been redone to pro-
vide greater modularity.

The top level remains essentially the same: initiate the sentence chart, loop, performing
lookups on each string in turn until the end of the sentence text is reached, then finish
the chart. The lockup operation first searches the lexicon, then uses the FSA If lexical
lockup failed; if the FSA fails, the current string is checked for period-space, signaling
the end of the sentence; If that Is not found, the process aborts, signaling an unrecog-
nizable string.

2 1 1  
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4.0 Event Representation Language lmpl.m.ntat ion
4.1 General

This section describes the implementatIon of the Event Representation Language com-
ponent (ERL) of MATRES II, comprising the template and event record data structures
and the search and fill procedures associated with the templates. The formalism which
will be used for the abstract specification of both the data structures and the pro-
cedures has been adapted from the programming language Prolog, which is described in
Attachment II. The advantage of Proiog for our purposes Is twofold: first, it Is a perspi-
cuous and powerful language for the expression of the concepts of our event represen-
tation language, and second, it admits of an effective and reasonably efficient imple-
mentation.

We do not attempt to implement the full Prolog programming language; in particular , we
only support the basic representation of definite clauses and their evaluation via the
basic unification and call/backtrack mechanism. Thus we will refer in the sequel to an
implementation of definite clauses rather than Prolog.
The implementation of definite clause procedures described here is an adaptation of the
Prolog Implementation described in Warren (i977a). Most differences between that
Implementation end this are due to the difference In machines and system environments;
some are simply due to the aband..~,iment of space and time saving features that would
have been somewhat expensive to include, or to generalities not required for our appli-
cation.

4.2 Strategy

Forth, as It exist s, does not provide much support for the compilation of languages which
differ much In syntax from Forth itself (the ATN language was designed to be very similar
to Forth). The semantics of the ERL are such that it could not be represented in a syn-
tax which would be easy to compile with Forth. Therefore, we have taken the following
approach.

The syntax of the ERL is that of Prolog, on which It Is based. A compiler translates that
syntax Into Forth Word definitions, which are then loaded with the rest of MATRES II.
The complier Itself is a separate program, written in SPITBOL (a dialect of SNOBOL)
which, with its recursive pattern-matching facilities and powerful string handling, lends
itself well to this task. The compiler will be described In a later section.
The interface betwee n the output of the ATN parser , a tree structure, and the template
matching procedures expressed in the ERL is managed by a set of Words which convert
the parse tree into a literal representation in the dictionary, as a nested set of skeleton
litarals, representing the nodes of the tree, and atoms, representing the lexical units at
the leaves of the tree. The first compiled ERL predicate is then invoked with the result-
ing structure as its single argument.
4.3 Data and Procedur e Structures
4.3.1 General The major Structures in this implementation are the local and global
stacks, the trail, and the code area. in the MATRES environment, the code area, includ-
ing skeletons, resides In the Forth dictionary; for consistency, the parse tree, which is a
constant to the semantic interpreter, is copied Into this area also.

4.3.2 EnvIronment
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4.3.2.7 Stack Structures The local stack Is maintained on top of the dictionary (actually.
the dictionary pointer Is kept pointing above the stack , sInce the area just above the
dictionary is used by the Forth outer interpreter). Local variables are kept on this stack ,
and consist of “short” (one word) locations, pointing to values in the correspondIng
frame of the giobal stack. Thus, the local stack is one word wide. A local frame will
have the following fields:

A Parent goal’ s argument pointer
X Parent goal’s local frame address
V i Parent goal’s global frame address
TR Top of trail stack when parent goal was Invoked
FL Failure address (if any) for parent goal
W Local frame address for the most recent choice point prior to parent goal
DP Forth dictionary pointer contents (therefore top of local stack) when parent goal

was Invoked

NX Top of global stack (from NXTAVL) when parent goal was invoked.
Thus, the first local variable word Is offset 8 words from the frame base. Temporary
variables are allocated at the highest offsets.
The global stack resides in the dynamic area on top of the sentence chart (the parse
frames are discarded after copying the parse tree), and contains global variables and
constructed terms occupying “long” locations (two words wide). Space is maintained on
It and addressing performed using the same dynamIc space Words as the ATN processor ,
except for allocation and deletion from the stack top, which Is Integrally bound up with
the clause control mechanisms.

The trail resides in the dynamic area, growing downwards from the top of the dynamic
address space, towards the global stack , and contains pointers to variable locations on
the local and global stacks.

4.3.2.2 Specl& Registers The special registers needed to hand’e the environment are
Forth variables. The following registers are used:
V local stack base for frame being defined during unification; top of local stack after

unificatIon.

V i same for global stack.

W global stack base for current skeleton being defined during unification; equal to
V i at top level.

W Imag. of V for frame associated with last choice point.
Wi image of V i for frame associated with last choice point.
TR pointer to the top of trail stack.

X local frame base for current goal.

Xl global frame base for current goal.

A pointer to argument list of current goal.

.1
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V global frame base for current level goal skeleton; equal to Xl at top level.

B pointer to argument list of current level skeleton being unified with.

In addition, the dictionary pointer, OP. Is used as the pointer to the top of the local
stack, and NXTAVL points to the the global stack top.

4.3.2.3 Constructed Terms These terms occupy value cells in the global stack , and are
thus long Items.

undef is two zero words.
ref(L) is a constant zero (0) followed by 1, the address of the value cell refer- I -

enced.
localref(L) is a constant two (2) followed by L, the address of the local stack word

referenced; this only occurs during a pseudo-machine instruction execu-
tion, and will be replaced before the end of the instruction.

void Is a constant (4) followed by anything; as with “locairef” , this only
occurs during an Instruction.

atom(l) Is a constant six (6) followed by I, the address of the atom literal.
int(I) is a constant eight (8) followed by I, the value of the integer.

moi(S,F) is S, the address of the skeleton literal, followed by F, the base address
of the associated global frame.

4.3.3 UnifIcation Algorithms

4.3.3.1 Dereferenc lng Dereferencing is applied to goal arguments to obtain their
values. Different algorithms are used for local and global variables. For a global vari-
able, references are followed to return the address of eit’ ier a value or an undef cell.
In the latter case , the address is trailed. For a local, if the pointer on the local stack is
zero, a new global cell is obtained and filled with a “locairef” to the stack word, and the
cell’s address is stored in the stack word, trailed, and returned; otherwise, the global
algorithm is used on the cell pointed to by the local word.

4.3.3.2 Assignment Assignment also differs between global end local variables. For
locals, the address of the value cell Is placed in the local stack word. For globals, the
value itself Is placed in the value cell, unless it Is undef; in that case , the address is
turned Into a reference and placed in the cell.

4.3.3.3 TraIling Trailing Is necessary when an assignment is made to a local word or
global cell which is in an environment earlier than the current one, that is when the
address Is less than the contents of register V (local) or V I (global). For a local assign-
ment, the address is pushed on the trail stack. For a global, the address of the cell is
pushed onto the traIl stack after incrementing It by one to indicate that it is a global
address. Resetting from the trail consists of getting the address, checking it to see If it
is local or global, and setting the global cell to which it points to undef, then clearing the
local stack word, if any. Both steps are necessary In the local case because there may
be other references to the same global cell, and the local word may point to a global cell
in a later environment.
In the sequel, the trailing algorithm will be assumed to Include the address check for the
need to trail.
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4.3.3.4 UnificatIon of Arguments

Goal Argument Value

Local Vat Global Var Atom integer Molecule
Local Var sag “ to asg “~ to asg ‘. to asg ~~ to asg S-.. to

( ( (

Global Var asg ( to sag ‘~~ to asg ‘s to 
- 

asg “. to asg ‘.. to

‘~,trall < C C C
Head Atom asg C to asg < t o  test if eq FAIL FAIL
Arg .-‘ , trail ~~~~, t rai l
Type 

__________ _____ _________ ____ ____

Integer asg C to asg < to FAIL test If eq 
- 

FAI L
A , trail “, trail —

Skeleton sag C to asg ( t o  FAIL FAIL 
- 

it tncs ,
A , trail ‘• , trail Unify args

TABLE 1. Unification Algorithms

The algorithm used to unify an argument of the clause head with the corresponding one
in the goal depends on the types of the two. Table 1 gIves the algorithms as a function
of the types. The type “var ” means “a variable which dereferences to undef.” The
notation “ “ means the goal argument; “)“ means the head argument. Thus “asg ~~‘ to
<“ means to assIgn the goal argument to the head argument. The algorithm for void van -
ables is not shown here; nothing is compiled for a void head term, and a voId goal term
unifies successfully with any head type.

In Table 1, the rows represent the “instructions” to be compiled for each type of argu-
ment; that Is, the form of an Instruction Is generally as follows: “dereference the
corresponding goal argument, test Its type, and perform the appropriate operation”.

4.3.4 CompilatIon of Clauses As in [1], the target language of compilation consists of
the “instructions” of a pseudo-machine; these Instructions will be described below. In
this implementation, they co~ aspond to Forth Words which interpret them.

Each clause Is complied Into code for the head clause, a neck instruction, calls and argu- -
~ 

-

ments for the body, and a foot instruction at the end. Also, for each predicate of a
given arity, there is a procedure consisting of an “enter” followed by “try ” calls on each
clause in which it appears, in the order of appearance; the last “try” is actually a
NtryIast~.

UnlIke [I], skeletons In arguments of both the head and body of a clause are compiled to
all levels, and have a dual representation: one, the “goal code”, consists of list of
Instructions, one for each argument , which allow accessing the values of the arguments.
The other, called here the “match code”, consists of instructions to do the work of unifi-
cation. Thus, in general, to unify two skeletons, the match code of one will be executed
with the B register set up to point to the goal code of the other , the V register set up as
the global fram e base of the goal skeleton, and W set up as the global frame t’j ise of the
match skeleton

The code for the head of a clause consists of a “head” Instruction, followed by match
code for the arguments. Similarly, the match code for a skeleton occurring as an

.1’- 1’.~
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argument in a clause consists of match code for the skeleton arguments , followed by a
“return ”. Match code In a top-level body skeleton will only be executed via a call from a
“uref” (see below). For example, assume that the clause “member(X ,cons(X ,L )).” is

being unIfied with the goal “memben(point(a ,b),Ptlist)” . The first occurrence ~‘f X wil l
unity with the skeleton “polnt(a ,b)” , and the second occurrence of X will ctt u~e tii~
match code for that skeleton to be called to unity with the first element of “Ptlist” .

The following subsections give the instructions used in the goal code and the match
code.
4.3.4.1 Goal Code instruction Definitions These are long items which occur in argument
lists of the body or in the goal code of skeletons; the first word of each Item contains a
parameter , and the second points to a Word which accesses an tern of that type. Thus ,
given a pointer to such en item, the appropriate value may be obtained by the Forth
phrase “ @+ @ EXEC” . During unification, the current vector of goal argument instructions
is pointed to by register B.

The value returned by the access Words is always the address of a value cell except in
the case of “void” . The second word of the item also serves as an Indicator of the type
of item. The algorithms for the accessing Words are described below.
var(l) dereferences the ith variable of the global frame whose base is in regis-

ter Y; occurs only In goal code. I is compiled as a byte offset from the
global frame base.

global(i) derefarences the lth variable of the global frame whose base is in regis-
tar Xl; occurs only in argument hats. I is compiled as a byte offset from
the global frame base.

local(l) dereferences the lth variable of the local frame whose base is in regIs-
ter X; occurs only in argument lists. I is compiled as a byte offset from
the local frame base.

void(0) returns the address of a “void” cell (see Constructed Terms) which
was initialIzed at the bottom of the global stack.

atom(l) I is the address of the atom literal; the access Word creates a value
call for the atom on the global stack and returns its address.

int(l) I is the value of the integer; the access Word creates a vaaie cell on
the global stack containing the integer and returns its address.

(fn(I),...] The first word of the item is the address of the skeleton literal. The
access Word creates a molecule on the global stack consisting of the
skeleton address and the contents of the Xl register , and returns the
sddress of the molecule.

4.3.4.2 Match Code Instruction Definitions This section presents the instructions used
In the match code for skeletons, and describes the algorithms executed by the Instriuc-
tlons. Exce~ t as noted, the Instructions are actually implemented as Words which take
their parameters from the stack , leftmost parameter on TOS. Thus “uskel(N,S)” would
show up In the Forth target as “S N USKEL” . The variable and argument numbers shown
here will actually be adjusted by the compiler to be byte offsets from the ~‘ppropriate
base register values, thus avoiding needless run-time computation.
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uskei(N ,S) Argument N of the current skeleton is a skeleton term , and S is the
address of the corresponding skeleton literal. Goal argument N at the
current level (based on register 8) is dereferenced. It the rcsuit is a
reference , a molecule is termed from S and the contents of tti~ Vi  regis-
ter and stored In the :efe,esiced call; the assignment is treiI~’d . i.~ther-
wise , it the result is not a molecule or the tunctor of the skeleton is dif-
ferent from that of S, failure occurs. if the functors match, registers B,
Y, V i and the address of the next Instruction are saved on the local
stack , and new values are set for B and V from the molecule , thus
preparing to match the arguments of the goal skeleton agatost the
current (sub)skeleton’s arguments. The matching Is done by the match
code -~t the skeleton literal at ‘S” .

uvar(N,F,i) Argument N of the current head skeleton is the first occurrence of vari-
able I of type F (local or global). Argument N of the current goal skeic-
ton Is dereferenced and the result is assigned to cell I in the current
frame of the “F” stack , unless F is global, the result s a referenc e’ and
the goal argument is local. in this case , the reference is assigned to the
goal variable , and the assignment is trailed. The actual implementation
will use two Words , UGVAR for globals end ULVAR for locals , each with
two parameters.

uref( N,F,l) Argument N of the current head skeleton is a subsequent occurrence of
variable I of type F (local or global). The value of the variable is
obtained, and its type is used to switch to the appropriate unification
code. As with “uver ”, two Words will be used for the Implementation ,
ULREI- and UGRIF. In the case where the value Is a skeleton , the  B, V .
and W registers are pushed onto the local stack , and the match code for
the skeleton is executed with B and Y set from the goal molecule and W
set from the reference molecule.

uatom(N ,l) Argument N of the current head skeleton Is an atom; I Is the address of
the atom literal. Argument N of the current goal skeleton is derefe r-
enced; if It Is a reference , an assignment Is made and trailed; otherwise
fail ure occurs unless it is atom “I”.

u in t (N ,l) Argument N of the current head skeleton Is an Integer; I is the v.iiue of
the integer. Argument N of the current goal skeleton is dereferenced; if
it is a reference , an assignment Is made and trailed; otherwise failure
occurs unless it Is an integer with value “I” .

lnitO,J) is used to set global variables I through J-l to undef ; this must be done
just befor e a “neck” instruction for variables which do not occur in the
head, and thus have not been instantiated. Similarly, It must be done
before a “uskat” whose skeleton contains first nlstanccs ci ~ iriabies ,
since the skeleton match code may be bypassed. Omitted if no such
variables exist.

iocallnit(l,J) Like “m it’ , but for local variables; only used before a “neck ’
4.3.4.3 Clause and Proc edure Control Instructions

enter is the first instruction in the procedure code for a predicate. It sets up
the control information for a new environment by storing the VV , X , A. V I ,
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and TR registers , and the dictionary pointer and dynamic stack top
(NX T AVL) ,  into the corresponding fields of the local frame , then sett ing
W and VV 1 from V and V i , respectivel y, to indicate a choice poine .

head(l ,J) is the first instruction in the code for the head of a claw;e ~~~~ .j
varIables and J global variables. It checks the two stacks to ~;ec that
there will be enough room for the variables by adding 1+8 wuros to the
Forth dictionary and allocat ing J cells on the global stack , then sets up
the environment for matching arguments by setting registers 13 and V
equal to registers A and Xl , respectively.

neck precedes the body of a non-unit clause. The success of unitic ution is
signaled by setting registers X and Xi from V and V i , and sot t lng V bind
V i to the top of their respective stacks.

foot(N) follows the body of a non-unit clause for a predicate of ar ity N. If regis-
ter W is less then register V , indicating a determinate complotion of the
current procedure , the dictionary pointer is set from the current DP fie ld
and register V is set from register X , thus recovering all local storage
used during the procedure. Registers A, X , and X i are restored from the’
corresponding fields in the frame based on register X , and control is
transferred to the current goal ’s continuation (after the last go~tl argu-
ment).

neckfoot(N) follows the heed of a unit clause , and is equIvalent to “neck , foot (N) ’ ,
but it takes advantage of the lack of a body. Register V i is set to the
top of the global stack and, it nondetermlnate , register V is set to the
top of the local stack. The control transfer Is then done.

cut(i) corresponds to an occurrence of the cut symbol Ir the body of a clause
with I local variables (excluding temporaries). Register V is set to the
end of the frame based on X (after setting the dictionar’~ pointer from
the current DP field) to discard the local frames set up by ‘ neck” .
Registers VV and W i are set from the corresponding fields in the goal
frame , based on X, if VV does not already point to an earlier frame than
X. Trailed addresses which are greater than VV (i.e. created since tho
current goal) are removed from the trail.

neckcut(l) corresponds to a cut occurring as the first goal in the body of a clause.
It combines the effect of a “neck” and a “cut” in a straightforward way.

neckcutfoot(N) corresponds to a cut occurring as the only goal in the body o~ a clause.
It is equivalent to “neck , cut(O), foot(N)” . Register Vi  k incremented; if
nondeterminete, registers VV and Wi are reset end trail entries are dis-
carded where possible; control is then transferred as with “foot ’ .

return Is the end of the match code for a skeleton. It restores the B, V , and W
registers from the local stack , and transfers control to the stacked
return address.

fehl corresponds to the goal “fall” in the body of a clause , and causes deep
backtracking. Register V is set equal to register VV , and registers V i , A,
and X are reset from their corresponding fields based on register V , and
Xi Is set from the Vi field based on X. The dIctionary p~ ’nter and
NXTAVL. are reset from the corresponding fields. Trail entries are popped
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and the words reset until the TR register ,jrees with the TA field based
on V. Note that shallow backtracking, which occurs on a unification
failure in the head, is done by just resetting from the trail, unless regis-
ters V end VV are unequal, in which case deep backtrack ing must be
done. Both kinds finish by translerring to the address specified in t he  FL
field of the current local frame.

call(L) corresponds to the the predicate of a goal in the body of a clause. L is
the address of the procedure code for the predicate. Register A is set
to point to the instruction following the call and control is transferred to
L.

try(L) Is used in the procedure code to enter a clause, whose code Is at
address L. The address of the FL field of the current local frame is set
to point to the next location after the “try ”, and control is transferred to
L.

trylast(L) is used at the end of the procedure code to enter the last clause.
Registers W and W i are reset from the corresponding fields of the
current local frame , and control is transferred to L.

4.3.4.4 Liters/s Literals in this interpretation will be Forth Words with compiler-assigned
unique Forth names. The name given to the literal in the FRI source (if any) will be
stored with the Wo”d as a name string, i.e. In the form returned by WORD. As is usual
with Forth , the addresses returned for literals will be the code address , I.e. the address
of the first word of the literal data.

A skeleton literal is a Forth array, the first word of which points to the Word identif y ing
the principal functor , the second to the match code, and the third to the goal code.
A functor (or atom) literal Is a Forth array, the first word of which is the “ar i ty ” of the
functor (0 for atoms) , and the rest of which is the name string.
4.4 References

[1] DavId H. Warren , “Implementing PROLOG” , volumes and 2, D.A.I. Research Report
Nos. 39 and 40, Department of Artificial Intelligence , University of Edinburgh, May
19,’ 
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5.0 Event Representation Language Compiler

6.1 Strategy

The compiler is implemented in PDP-1 1 SPITBOL, using the compiler techniques descr ib-~d
in James Gimpei’s book “Algorithms in SNOBOL4” , Section 18.4, to reiate t h e  sylieax and
semantics. Familiarity with these will be assumed here. The compiler processes a
clause at a time, outputting Forth code for the clause and adding to the procedure code
for the principal functor of the clause. At the end of the input file, the procedure code
for all predicates is output.

Due to space limitations in POP-i 1 SPITBOL, the compiler has to be broken into sections;
we chose to make two programs: the first pass , which analyzes the syntax and accumii-
lates Information on the variables, and the second pass, which produces the code. Pass
1 produces a file called “TEMPLATE. INT”, which is read by Pass 2 and processed to pro-
duce the final output, called “TEMPLATE.4TH” . The input to Pass 1 is calle d
“TEMPLATE.ERL” . - -

-

5.2 Internal Data Structures

The major data structures in the compiler occur in Pass 2. These are as follows:

IDT is a table of identifiers of atoms and functors. Each entry in the table is
Indexed by a string of ‘he form “name arity”, and its value is the Forth name
by which the atom or functor will be referenced. The table is initialized with
names which have “special” Forth names; the usual Forth name is generated
by the function TID and is of form “Fn”, where “n” is an integer.

PREOT is a table whose entries are Indexed by the Forth name of a functor, and
whose values are strings containing the procedure code for the functors.

PREDN is a table indexed like PREDT, but whose values are the Forth procedure
names corresponding to the functor names.

PREDLST is a list of the Forth functor names of functors encountered duriig compiling;
this is used at the end of compilation to list the predicates whose procedure

• code is to be output.

VARL is a list of the variables in a clause; each entry in the list is a string of the
form “v <name)” (e.g “vX” for a variable named X). Each such str ing is t he
name of a VAR_ REC structure containing the number of occurrences of the
variable, whether it is global or local, and its offset from the base of its stack.

6.3 Pass 1
The main program consists of a loop which reads and compiles a clause, going to the
label EOIN at end-of-file on input, which currently just terminates the program. Each line
of the clause is read and any blanks removed (currently a small problem; any blanks in a
string literal will also be removed). it is appended to the rest of the clause in string
STMT, and the string FS, which was set during input pattern matching, checked. If a ter-
minatIng period was encountered, it will be in FS, and the clause will be comp ete. Oth-
erwise, another line is read at RDLP. The completed clause has a blank appended to
match the pattern FULL_ STOP, and it is output as a comment (this commen’ v w s  or~ii-
naliy to have been passed through Pass 2 into the Forth code, but  it caused problems
and so was dropped).
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The pattern CLAUSE , which contains the syntax of the LRL In SNOBOL-executabie form,
is passed against the clause twice; first with the variable VAROUT set to output variable
information from the semantic routine P1_ VAR , and second with CMDOUI set to output
semantic routine names and the values of strings found during parsing (variable nemos ,
atoms, etc.). After the fIrst pass , a null line is output to delimit the variable i i i to i  inatioti.
Each semantic routine in Pass 1 has a corresponding routine of the same name In Pass 2,
except for the prefix “Pn_ ”. The semantic routine dispatching code at “S~~” outputs
the routine names. The semantic routines themselves have only to maintain the term
nesting level (to allow labeling variable occurrences as local or global) and to Output
parsed strings as found and pushed during the pattern match.
5.4 Pass 2

5.4. 7 MaIn Program The main program here reads and discards the line containIng the
clause text , going to EOIN if an end-of-file is present. Next , the variable Intormati~ ,i is
road, and t h e  list VARL Is built and the count of global variables NULOB and total van
ebb s NVAR is made by the Ioop~ from VAR to LOVAR. Some complication of tins code Is
caused by the fact that a given occurrence of a global variable may or may not be glo-
bal.

The null line after the last varIable occurrence in the input causes a pattoin match
failure that causes actual clause compilation to begin. This is done by simpI~ rt’~iding the
input line and ceiling the semantic dispatch function “S_ ”, which will t reiislt ’c to (lit’
routine named by the input line. The variable DONE is used as a terminating coi,dition~ it
is set null at the beginning and non-null by the routine P2_ FOCI , which is called at t h e
end of a clause. After compiling the clause, the variable list and each var iable iiame ’s
contents must be deleted to prepare for compiling the next clause; this is done by the
loop at EMPTY. Finally , when all clauses have bean processed , control cornt~s to LOIN,
where the iist PREDIST is teed and the procedure code output.
5.4.2 SemantIc Routines The major semantic routines are covered here. lo see (tie
order In which they are ca lled, and what inputs are passed to them, examine the syntax
pattern in Pass 1. Each string picked up by a “. PUSHO” there Is output by the

• appropriate routine, and thus is available to a Pass 2 routine by simply reading the Input.
Routines pass Information to each other on the stack via PUSH and POP, tisunily using
the s t ructure  F O R T H , which has three components: a string comprisIng the match code
for an element , a string comprising the goal code , and a null string unless the eloment is
a variable, In which case It is the variable’s offset (this Is used by 11811 and Ski It .
below).

The routines are listed and described here by name , with the “P2_ ” pref ix  omitted.

VAR Is triggered by a variable occurrence; the variable name is read and It s  int er-

nal name (i.e. beginning with “v ”) is assigned to 12. It it is the llrst
occurrence of the variable , OFFSET of the corresopnding VA R HI C tins not
been set. in this case , we first determine If the variable occurs more (lien

• once; If not, it Is a void variable, and we go to VDVAR to push the appropriate
structure. If so, we set its offset from one of LOt I or (301- 1- , and update that
item (these offsets are lnitlalizcd by INI, and incremented by the approprinte
one of ( iNC or GINC). Finally, we push the variable I OH I H structure, including
the Just assigned offset.

ATOM is triggered by the occurrence of an atom; it Is only necessary to get the
atom string, get a Forth name for It vie TID, and push the structure fo r  i t .
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LISTF is called at the end of n list occurrence. The stack will contain the elements
of the list, with the top element being the structure for a “nil” atom or w hnt—
ever term was preceded by “ .. “; 1- I _ CT will be set to the numt er of ott ’-

meets , and NEST will be one greater then Its value outside the list. 1t’e item
fill will be sat from the off set of the structure at the top of tho .s(o’ ~, only
it currently Is null; (01 will be set from the offset only if the otf r.c’t is not
empty, Both here arid In SKEIF , fill ani LOl will be set this way each time a
structure Is taken from the stack; thus, 101 will contain the lowest variable
offset seen so far , and fill the highest (this depends on the fact thnt •tie
offsets increase from “right to left” In the clause; also, since only global vari-
ables occur in these structures , the offsets will be global). The goal an~imatch codes of the top two stack structures are concatenated nnd oiitpot ,
end a CONS literal is output to reference them. This literal represents the
end of the list. Next , a loop indexed by EL_ CT is performed, gettiti~ the  n ext
structure from the stack and building a CONS literal from it and the name of
the CONS literal just built. In this way the list is built up as a nest of CONScs.
At the end of the loop, a skeleton FORTh structure which cont a in s t h e name of
the top-level CONS Is pushed on the stack , If HI1 is not null, and NEST is one ,
indIcating that the list is a top-level argument in the clause , an INn icstruc-
tion is prefixed to the match code, and HIl is set null. This assures thnt , dur-
Ing unification, variable- with Initial occurrences In th e list will be ~et to
undef.

SKELF is called at the end ol’ a complex term occurrence. The item ARGNO will lie
set to (number of arguments - 1) times 4, this since ARGNO is used during
argument processing as the current argument offset. The stack will contain
the arguments, last one on top, with the value of ARGNO outside the terni
below them, and the functor name below that. A loop indexed by the number
of arguments is performed, concatenating the match and goal code of the
arguments, and setting HIl and 101 as described under LISTF. If NEST is
zero, indicating that the term is at the top level, the number of arglimcvrt~ and
the code structure are pushed back onto the stack to be dealt with by
FIN_ HEAD (see below). Otherwise, the goal and match code are output fol-

.1 lowed by a skeleton literal pointing to them, and a code structure for that
lIteral pushed onto the stack (as in 1-ISlE, including an INIT it appropri~ to).

GOAL handles a term at the top level In the body, and expects what SKF I F leaves
at NEST level 0. It picks the goal code out of the structure on the stack top,
changes occurrences of “VARACC ESS” io “GLOBALACCESS” , and appends a
call to the procedure name of the functor to the clause code (In item CI OIJT),
with the goal code as the argument list of the call.

5.4.3 Aux Iliar y Functions

FIN _ HEAD is celled by routines which occur at the end of a clause head to compIle the
necessary code. It assumes that the stack contains what SKI. I F leaves for
the top level. It picks up the match code from the top stack t int’irt and
gets a Forth name for the functor from TID. It gets a new clause name and
appends It to CLOUT as the Forth Word name for the clause , tb -u ndds a
“TRY” of that clause to the procedure code of the functor. Next , a “HEAD” is
added to the clause code, usIng NVAR and NGLOB to compute its orçprments,

followed by the match code. Finally, “iNit” and “LOCAtI NiT” instructions are

•.‘ 
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added as necessary (LOFF and GOFF indicate how many variables have
occurred In the head, and thus how many have theIr first occurrence in the
body and need to be set to undef).

EMIT is used to output Forth code; it Is necessary because Forth restricts its input
lines to 80 characters. It uses the loop at FMIT _ 1 along with the function
DEC to find the longest string less than 81 characters that is immediately fol-
lowed by a blank, so that a Word doesn’t get split. Thus each string sent to
EMIT gets output as one or more lines with no Words split between lines.

TID Is used to produce a unique Forth name for atoms and functors. its aruuments
are the letter “A” or “F”, depending on whether an atom or functor is being
Input, the source name string, and an integer giving the arlty of the functor
(or zero for atoms). It concatenates the name string and the arity to make
and Index to lOT; if there is an entry, it returns its value, which Is the Forth
name. Otherwise, it makes a new Forth name , enters It into lOT , outputs a
“FNEIT” associating the Forth name with the input name string, and (if It is a
functor) sets up the procedure for the functor , outputting a “RECURS” dat liii-
tlon of the Forth procedure name to be referenced by CALLs, starting the pro-
cedure code, and adding the name to PREDLST.

EMITPR Is called to output the procedure code for a functor. it converts the last
“TRY” in the code to a “TRYLAST” ; if this fads , there have been iio clauses
encountered for this functor, and EMITPR gives up. Otherwise , It outputs the
completed code.

6,6 LimItatIons

This complier was produced in haste , and had to be “programmed around” sonic bugs In
SPITBOL; thus, it has some shortcomings. As mentioned above, blanks in string litorals
are rudely squeezed out; also, the semantics wIll not properly handle an atom (i.e. 0-
arity functor) as a top-level term. EMITPR should probably emit a “fail” for a functor
with no defining clauses. Since we were dealing with a limited subset of P11010G. no
attempt was made to allow some of the nice features of that language such as number
expressions, lnf ix functors , parentheses and semicolons in the body, etc.
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6.0 Glossary of Lexical and ATN Words

6.1 Dynamic Storage accessing Words

DYNBAS is a constant - the base block number for pointers to dynamic storage.

NXTAVL is a pointer to the next available byte of storage.

GTNEW (\GTNEW) allocates storage, C(TOS) words (bytes) long (up to 1024 byter),
returns a pointer to the start (will see that storage lies within a FORTH block
and update NXTAVL).

TRUNC truncates dynamic storage at the pointer on TOS.
D@ (\D@) returns the word (byte) pointed to by the pointer on lOS.
D@ + (\D@+) operates like D@ (\D@), but returns a pointer to the next word (byte) above

the retrieved value.

0+ (\D+) increments the pointer on 20S by C(TOS) words (bytes).

D! (\D’) stores the word (byte) on 20S at the location pointed to by TOS.

OFf (\D!+) operates like 0’ (\D!), but returns a pointer to the next word (byte).

DOSET sets the word pointed to by TOS to zero.

ODMOVE moves C(TOS) words from the location pointed to by 30S to that pointed to by
20S (I.e. “from to length DOMOVE”).

DAMOVE (ADMOVE) Is like DOMOVE, but moves from (to) dynamic storage to (from) main
memory (e.g. dictionary, stack).

\DDMOVE, \DAMOVE , \ADMOVE are byte equivalents of the above.

OTOA produces a main memory address from a dynamic storage pointer (to be used
only when absolutely necessary, as when calling a Word which needs a regular
address).

6.2 Lexicon Compiler

The working data items are as follows:

FPTR points to the “number of feature vectors ” word in the entry currently being
defined. This pointer is used to increment the count In the entry.

ENP poInts to the first word of the entry being defined. The dictionary pointer (OP)
Is kept pointing to the end of the entry.

LXPTR points to the next available word In the current lexicon block , and is used in
moving the newly-defined entry into the block.

FREBYT count of the number of free bytes left in the current iexicon block. This is kept
consistent with LXPTR.

CRMASKan NWRD-word array which contains the feature vector (or mask) which is
currently being built for the entry. During the definition of the features , it con-
taIns the value for the feature next to he defined.

The operational Words in the compiler are as follows: 

~~~,— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J



~~~~~~— .

LEXICON Initializes CRMASK for the first feature definition, end starts a scope block for
feature Words , to avoid possIble conflict between feature names and program
names.

FEATURE defines a Word which, when used, wIll “or ” its value into CRMASK. The value of
the Word is taken from the current value of CRMASK; CRMASI(. is then shifted
left one bit to form the value for the next feature.

(double colon) sets up the next lexical entry, movIng in the strIng for the entry and
setting up ENP, FPTR , and pointing OP to the location for the first feature vec-
tor.

[ clears CRMASK in preparatIon for building the next feature vector for t h e  entry.
] moves the feature mask from CAMASK to the position pointed to by LW, then

updates OP and the count pointed to by FPTR.

stores the length of the entry In the count byte of the entry, then moves the
entry into the block , starting at the posItIon specified by LXPTR. First , however .
It checks FREBYT to see if the entry will fit; if not, it stores an end-of block flag
and sets up FLEX , LXPTR , and FREBYT for the next block. In any case , It
restores DP to build the next entry in the same space.

ENDIEX stores an end-of-lexicon flag in the location pointed to I’y IXPIR, terminates
the scope block , ~nd flushes the block buffers.

6.3 ATh Processor

6.3. 7 Context-Related Words

FRAMBASE Is the pointer to the first word of the current state frame. That word in turn
contains a pointer to the first word of the previous frame.

REGISTER, LIST are defining words. They define a word as a variable containIng the
current offset , then Increment it. When the defined word is reterenced, It will
return the then current value of FRAMBASE added to its value. .‘IEGISTER
defines a one-word cell, LIST a two-word llsthead.

CUROF Is the current offset to the next defined item In the frame. After all items are
defined, it gives the size of the basic state frame.

REGOF Is the offset from the frame base to the first regIster cell. It is used (with
CIJROF) to delimit the register and list head area.

1STREG is equated to the first defined register offset of the state frame. It is used to
Identify the start of the register and list head area.

NEWFRAME , OLDFRAME are described elsewhere.

6.3.2 Processor Auxiliary Wo,ds

SKPTO, GOb , SKPS are used to effect transfer of control at the same level of Word
invocation (like a “goto”, which FORTH doesn’t have, but Is Implicit iii the defini-
tion of an ATN). The type of transfer depends on whether the address given
contains a word in a COLON-type definition or is the code word at a tfrfi ,i~t,on.
In the case of a code word, the return stack should be left at the level of entry
to the parser , so SKPS or SKPTO Is used depending on whether the current
Word is in the parser or called by a Word in the parser. GOTO is used to
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transfer withIn a Word (e.g. to the next arc) at the same level as SKPIC) . The
actual transfer of control occurs when the next “ ; “ i~ executed.

LIT is compiled into a definition and, when called, pushes the following word 1 the
definition onto the stack.

\COMP compares two strings of bytes, given TOS =Iength, ?O~ and 3(~~ t iu .  nq string
addresses. Returns 1 if string 20S < string 3O~;, 0 if equal, .1 it s tring ~‘‘S )
string 30S.

PRSTNM takes a pointer to a state Word parameter address , and prints the ’ Word ’s n iint

(will actually work for any Word).

DPRSTNM is a conditional version of PRSTNM.

PWORD takes a pointer to a lexical unit , and conditionally prints the str ing i~nd the
address of the lexical unit for tracing.

PRLEVELcorresponds to the current nesting level of the printout of a structure , and is
used as the indentation count for a line of printout

PROELTA is the amount to Increment PRLEVE L for each nesting level.
PTR-TYPE takes a ptr and returns a value depending on the type of element to which it

poInts: 0 - lexical unit , 1 - list , 2 - node.
PRTYP is like TYPE , but indents PRLFVEL spaces first.

PRLEX takes a pointer to a lexical unit and prints the value of the pointer, an ellipsis,
and the string for the lexical unit.

PRTPTR takes a ptr and prints the structure to which It points, using PTA-TYPE to select
the appropriate printing Word to call.

PRLIST takes a pointer to a list head, prints “LIST OF: ”, Increments PALEVEL , calls
PRTPTA for each ilstel, decrements PALEVEL, and prints “END LIST ” .

PRNODE takes a pointer to a node, prints “NODE:” and the label name, increments
PRIEVEL , calls PRIPTA for each branch, decrements PRIEVEL, and prints “END
NODE ’.

FINPARSE types out the structure for the parsed sentence returned in STAR, using
PR TP JR.

FALPARSE Is called when the parser backtracks out of the initial state , indicating failure
of the parse; It simply types a message.

6.3.3 AIN Processor Words These are Words which are complied into the grammar
Itself.

ARCENT1 Is the first Word executed in an arc. It increments ARCNO, prints a message ,
and calls NEWFRAME, hoping for success.

PSHENT is called at on entry to a PUSH arc; It sets up the first frame for the subnet and
clears the registers and lists at that level, but does not make it current; rather
It stores its address in NI XT FRAME. This allows items to be sent to the sij bnot
vie NEXTFRAME.

ADVLEX takes a pointer to the “new” current lexical unit and pops it Into LEX; this is
done after the actions of an arc so that LEX refers to the right unit for the
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ac tions.

SETSTAR is called at the end of a PUSH arc to reset STAR from LEX.

STPUNT is called on state failure to print out the state name.

STFAIL Is called when the conditions on an arc are not met. It types a message, calls
OLDFRAME to undo what ARCENT1 did, then sets LEX to the lexical unit pointed
to by the alternate pointer of the current unit. if this was the last (or only)
alternate, LEX is reset to the first alternate (Dy finding the next of the previ-
ous) and the next arc is made current. In any case, the current arc receives
control.

FNDSTATE takes a pointer to a state name in the form required by ?FIND. It calls ?FIND
to get the code address of the state; it stores It in STAAT and returns it on the
stack. If ?FIND returns zero, however , a message is typed and the parse is
aborted.

POPND is the last Word executed for a POP arc. It gets the IC and frame pointer from
RETRN , copies the arc address , arc number, state address, and return informs-
tion from that frame into the current one, copies the registers and list heads
from that frame Into the current one, pops the TOS value into STAR, and goes to
the postactions of the calling PUSH arc through the RETRN IC.

JMPND is the last Word executed for a JUMP arc. It just goes to the state wnose
name Is stored at the beginning of the arc.

1 TOEX, 2TOEX are compiled for the TO word of a PUSH arc; 1TOEX takes a pointer to the
code word of the state to be “pushed” to and stores it in STAAT , and the frame
base of the previous frame in RETRN+2, after m oving NEXTFRAME to FRAMBASE,
thus setting up the first frame for the subnet; 2TOFX takes the address of the
call to it, increments it to be the address of the next word and stores it into
RETRN , then goes to the state specified in STAAT.

CMPWRD takes the address of a string of characters on lOS and the address of a lexi- Ical unit on 20S; it returns true if the string matches the string pointed to by the
lexical unit.

GTLEX4W~ID Is called between word items of a MEM list to get the lexical unit pointer ,
which has been saved on the return stack , back on tt’e parameter stack.

NEGWRDcalls CMPWRD , then reverses the truth value.

TSTCAT takes a pointer to a feature mask on TOS and a pointer to a lexical unit on 205;
~nd returns true if the vector pointed to by TOS is a sdbset of the vector of the
lexical unit pointed to by 20S, i.e. for each bit pos it:on of the former containing
a one, the corresponding bit position of the latter also contains a one.

NEGCAT calls TSTCAT and reverses the truth value.

ENDSNT tests for the end-of-sentence flag (i.e. a zero in the first word of the lexical
unit).

* returns the contents 1 the special register STAR.

*4.1, *-1 return pointers to The next lexical unit and the previous unit, respectively,
using the appropriate pointers of the lexical unit pointed to by LEX.
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ADV ( R E T )  sets I I  X to t h ’  IH’ 
~ 

(p ev io&~s) It ’ xic ii unit

SE !R ~~~~~~ ~,tor t ’~ the value in the’ t t ’ m .

GI JR returns tht~ value ot the it e’ in

L ABE I is used to dec la re ’ a node label , it take’~ a value on the t~ick wh ,. Ii I tt~ ’
number of branches for a node of that I ype.

NODE makes a node on top of the current frame and retu mns a pointer Ic it .

ADDI IS I rnaki’s ~ nt’v~’ Itutci on top of th5’ current frame and ltnk - it to t t ’~’ I ‘:1
lIst.

SE ND1~ st~~rt ’ - . t hc value iiit , the ’ register loca ~ion in the i i t’xt f t  .i

SENDI moves the list tit ’ ,*d from t lit’ curt ent f rame into the next frame .

RI I U restores the value ot the r t ! t j i s t t ’r int~ t in’ current frame from tIn’ pi ~~~ ~~tc ; c i t e .

RE I t  t e s t o r  t ’~~. the ~ ,ilut’ of the ’ list inte the ’ cu rt  e’itt f rame Irom the ’ pi c~ s : :

DEFPA RSI is used to def ic it ’  PARSL; the variable contents of PAHSt a~e set  to ~oint to
Vie ’ Un 5 t . it t ’ of t ~:c ~1r~1mmar. PAUSE , when called . ni~ kt’ s thc - - t
scope’ block v isi ble’ , uc ‘s NFWF-RAMF to set tip the  initial st~’te I “ n ~~ re: ~ ~
psei dic . i a t e ’ , then c ie~e c it and tins ii selected fields t 1 \ poi tt  to I it ’  I.. - .1

lexical unit , HI THN points to I IN~ AUS1 and ARC to FA 1PAHS~ - I Inn , v.~~ei the I’

top-- li’vt ’l POP is clone . F INPAR SI will recO ive ’ control ; when bt icktr ,i ’.-; 5i i  out of
the Initial state , F At PARS1_ will he the “arc ” that is t ,ied. F ii e t l y ,  NI tVr i~~- -\~ is
called again to set up the frame for the initial :5tate , and control is t ra i is te i
to that s t c t e

6.3.4 CompIler Au~ i/ i .~ry  Words

NCONO is used di :  tug compilation of the conditional part of an arc to couti t th i ;urnber
of truth v,ilut’s returned I~ t e s t s  w~ ,t h are cii the s I .i 5 - k I a given pr  - it  1 h I s
is necessary since e g. a CA ! arc may ‘i t ~ , t’ art addit uihil Ii ’s I A Icr t i re ’  c i t i j i —

tional it Is s e ’ t  to — I if APVL I ~ should be compiled at the e’ rid of I hi’ ~t i  I cii ~

ARC ! YPE is set to a number ~~ e’spt~iniiii~ to the t~ pe’ oh arc t’~ the arc e ’nt n ~~c rW.  It

Is used it v~trious ~laccs w her t’ arc—ty po — S~~ e ’ t if ic ,‘ tid~ nitist i t t ’ n .p. i ~ - S I .

ARCI NI is called by tiit’ arc entry words w ith the arc t \ p e ’ on I ~~S It :~ t - ’ i  t l tc  .~ r e ’

type iii ARC T ’~ Pt compiles a :e’rc and eeves a poir i t e 1 to it on lOS I. I S  will ‘c
used to rs t i ’ lace ’  the .‘ t ’ i .  with a poii i tt ’r to the nc ’i.t avc ~, i(U1 t’ itt S ~ r~~t e e  i . ~ ‘

to AR CFN I 1, and ieroes NCOND.

STAT I NI) compiles the’ next Word in the sour 1
_

e s into the’ tieveloping tie ’ I t n t  cii p1 , ‘cenied
by a skip around it and followed by coil,’ to t j i ’t ~ point e ’t to  the ’  d dud c ii
IN D S T A 1 E .

IFT will use the word point 5 ’d to by IC as the’ next IC if It ~S is t i i i i ’

8.3.6 Compilei Words

GRAMMA R s t o r e s the’ ice~.t Word in the source stream nod pelts ~e p “i ttt ~ t I. ’ 1 ’ I i  ‘ ~ ‘~ t -

this will be the name of the f i rs t  state ~o he entered ic~ the pot ~.s ’? . It t ikO
makes th e ’  scope block containing the’ feature Words visib le’ , ,end ; or
block for state names



ENDGRAMMAII makes the feature scope block Invisible again and terminates the state
name scope block.

:S sets the FORTH compile mode and enters the next word in the source In t h e
FORTH dictionary. The code word for t hat entry will point to the ccc .
the “ ;: “ , which will then be executed upon entry to the state. It pr nt s  a n tis -
sage for tracing, zeroes ARCNO, sets ARC to point to the ti r t~t c r c . then
transfers control to that arc.

compiles the end-of-state code, a pseudo-arc which simply calls STF’\II , p! i r r t s  
_ 

-

,

a message , arid then clears the FORTH compile m ode.
:WRD, :MEM, CAT are arc entry Words. They call ARCENT with their type cndc- ~ arid

compIle a call to “ *“ to supply an argument for their associated tests.
:TST , :PSH, :POP are arc entry Words like the above , except that they have no imi’Iit’d

test , and 50 (10 not compile the call to “ * “ . “:PSH” compiles a call to PSHFNT.
:JUMP is also an arc entry Word , but , after calling PSRCENT , it must enter the fohowing

Word from the source , which is the name of the state to jump to , into the die-
- tionary preceded by a skip around it.

I! compiles a logical AND if NCONO Is greater than one: it then comp;ies an IF 1
whIch skips around a STFA IE. If the arc type is not a POP or JUMP , ~~~~~ do not
advance the lexical pointer , a “ *+ 1” Is complied and NCONO set to -1. 11 the
arc is a PUSH, code is compiled to set SNDP to agree with DP, to l~~~, ure for
possible SENDRs.

“1 compiles the string following up to the next quote mark into t u e  dictionary pre-
ceded by a skip around It and followed by a LIT call to pick up a pointer to the
string.

“ 2 tests MEMFLG; if it ’s set, complies an IFT followed by the word on lOS, and puts
on TOS the address where that word was stored, then It complies a call to
GTLEX4W RD to restore the lexical unit being tested.

% ( -z ) compiles a call to “1, CMPW HD (NEGWRD), then “2; then It Increments F~jCONF) .

( sets MEMFIG for “2, puts 0 zero on 108, then compiles a call to SAVE to save
the pointer to the lexical unit to be tested.

) clears MEIMfl.G, resets the dictionary pointer to remove the last ii I and t-
GTLFX4W RD compiled by “2, then follows the chain of words following lET calls;
in each one , it stores the c urrent dictionary location; finally it increments NCOND
and compiles catis to UNSAVF and DROP to remove the saved lexical unit pointer.

AND , OH , NO! compile boolean operations on the results of tests left on the stock. AND
and OR also decrent en t  NCOND since t hey lea ve one less v a lu e on the  s t ack
than they find.

[ , — [ use the Word “[‘  from the Lexicon Compiler to build the feature vec tOr into
CRMASK.

] lini~ lte’s o CA T test by copying the contents of CRMASP~ into the dicl icnic c- ~~’~r~’ -
ceded by a skip around it and followed by a LIT call to pick up a poiniter to the
Co,i pi led f e ’ c ’ t u re  ~ e’c t. ’r; then it com piles a call to TS TCA T or NI i~C ~T depend-
ing on the value of NFGFI. e.~; then it increments NCOND.

‘0

ed  
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[EOS] compiles a call to ENDSNT , then Increments NCOND.
compiles an ADVL I- X if NCO ND is negative; th is is uone here rather t l~~ii in “‘

that LI X points at the current unit during the actions, If the arc is a PIJ~~ I t~ i- c ,
compiles a call to SFTSTA R to make STAR agre e’ w ith IPX  again. ~ T P i I~~~I) i~
then called to compile the state finding code , and SKPS is compiled to dO to it.
compiles the end-of-arc code: POPND for POP crcs , JMPN[) for JUMI~ arc:~; it
then puts the address of the next available dictionary location back iiito the
first word of the arc , using the pointer left on TOS by ARCEN I .

TO compiles a call to 1TOEX , then a LIT to pick up the address of the current k ’ - ,e-
tion itt the dictionary, then a call to 2TOEX.

PARSE as defined at the end of the compIler exports the name PARSE out of the AT NDF
scope.

6.4 FSA Morphology Words
6.4. 1 Morphology Process/ng Words
FSAARC hol~ s the addr ess of the f i rs t  word of ttte current arc being executed.

FSAPT holds tt ie address of the current character being tested.
MA1 CH is the major Word of t ire. SA. On entry. LEXWRK holds the address ci e~iej Iif ~~~

character of the string to be matched. On exit , TOS points to the feature vec-
for for the matched string or :r’ro if no match; FSAPT holds the address of the
first character past the matched string, or the character on which the match
failed.

ARCENT2 is the code for arc entry; it simply updates FSAARC.
TSTCHAR takes a pointer to a wordstring, and a character pointed to by FSAPT; it

returns true if the character Is In the string.

TSTFA IL checks lOS; it true , updates ESAPT to the next character positior.; it false ,
goes through FSAARC. k6.4.2 Morphology Compile, Words

PATTERN sets the n ame of the starting state into MATCH and opens the ncr:ii -’ scope
PAIDEF

ENDPATTERN closes the name scope PATD EF
sets FORTH compile mode , defines the state name as a Word, and estebhshes
state entry code which sets FSAAPC and goes to the first arc.

;; compiles a failure return as a last (pseudo-) arc and clears compile mode.
TSTCMP IL compiles code to test current character against string.

ARCENTFSA compiles arc entry code and calls TSTCMPIL to compile test.
A, :F each calls ARCI NTFSA to establish a new arc , and set ARCTYPE to 0 for a non-

final arc , 1 for a final arc (could he used for syntax checking, not c ’ i r r ’.’ritl —
done).

compiles a call to TSTFA IL , followed by coie to go to the specified sta t e.

:— -~~~

-

~ 

—~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~-- — —



[, J compile a call to TSTFAI L , then a call to return the address of thee specil ied
feature vector as the result of MATCH.
compiles the next arc pointer Into the first word of the current arc.

6.5 Text Input and Lexical Look up

The major Words here are  GETTXT and MAKESE N T , which, when called in turn , will read in
the text of a sentence and make the Internal representation for it - a “chart ’ of lex ical
units.

TXTP Is a variable which contains a pointer to the first byte of the sentence text.
TEXSTRT sets up the processing of the sentence text by pointing TXTP and SI NTP to

where the first character of the text will be stored - the second byte of the
next block after the end of the lexicon.

TEXFIN completes the text processing by appending a period set off by blanks to the
text and storing the length of the text in the byte lust preceding the text.

CHKPUNC classifies the character on TOS - currently, it r e tu rns  1 for a comma , 2 for a
period , and 0 f or any other character.

CHKWRD moves the “word” read by WORD to where SENTP points, preceded by a blank,
updates SENTP, then looks for punctuation at the and of the word with
CHKPUNC. On finding it , CHKW RD backs up SENTP one character to strip it of t ,
then returns 1 if t he punctuation was a period.

GETTXT reads in the text  for a sentence using the above words.
The following words are concerned with lexical lookup.
LEXLEN Is a constant giving the length of a lexical un It.

STRLEN is a variable containing the length of the string found by lexical lookup.
PVLEX Is a variable containing a poInter to the first alternate unit of the most recently

found word or phrase.

AITLEX is a variable containrng a pointer to the last-built unit , and is used to link alter-
nates together.

LEXWRK is a variable containing a pointer to the current place In the sentence text for
hookup or lexical unit construction.

LEXB is a variable containing the current lexicon block number during lookup.
LEXENTCK takes a pointer to an entry in the lex icon on lOS, and compares its string to

the string starting at LFXW RK , using the length of the lexical string as the com-
pare length. If the lexical entry given is rea lly the “end-of-lexicon” entry,  it
returns -1.

MAM LEX takes a pointer to a feature vector. It makes a lexical unit , using LEXWR K for
the str ir:q pointer and STRIEN for the string length, returns a pointer to the new
unit, and updates FRAMSIRT.

PVLINK takes a pointer to on old lex icat unit und a pointer to a new unit. It puts a
pointer to the new unit in the “next” link of each alternate of the old unit , and a
pointer to the old unit in the “previous” link of the new.

- - - 
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~1
ALTL INK takes a pointer to an old lexical unit and a p e mim le r to a new unit. It puts the

pointer to I lu new unit in the “al te rnate ’’ link of the old.

MAKLUXUN 1 takes a pointer to a lexical entry, and makes the lex ic a l  u:iil( . ,) c emrecpcmn t -
ing t the er,tr~ It makes the f i r s t  c1 i t e r n i ~i t c ’ and link’ it u s  t hu u t i e - v t  t i l it t 0

each alternate of the previous , ther m makes and lin ks t 1 me renua~ - m m lq ,i (, r i m ,, tes (if
any). It then updates LE~ WR r.~.

MAKMATCHUNI makes a lexical unit for the string found by the I S~ co m puting tile st r inq
length front the diUer t une between FSAP I and LI ~W RK I, lee - ~. one to c c c  -4m m i t  ioi
the te rm i mm i tmng  delimiter assumed to have he eii m seen ti~ tim e’ I SA) , l~ . ar~~umu’nt
is the feature vector pum m ut e r returned from the F SA.

NEXT IEXENT takes a pointer to an .nitry in the lexicon - mi ll returns a peiiit &- r  to t l m ~ n e x t
entry, advanc ing to the next block of the lexicon if necessary.

LXLOOKUP searches for a lexical entry to match the tex t  str in i starting at LLXW RK ,
using LI XE NI (‘K and NE X ~LEX 1 NI. if found , it makes a k’~.icai t ’ m t r y  tor it using
MAKI I .XI.JN i n i r ’ t u r r r -~ 1 rue. It not founO , it r e t u rmm S False.

MATCHLOOKUP uses the I sA t - a t t e nmpt a match for the current string. It scccu ’n .sf ui , i~
makes a lexical entry using MAKMATCHUNT and returns True , otherwise it
returns 1~ lse .

BOMB is used by I OOKIJP to print the initial segment of the current st~o;iej and abort
the processing efter l~otii the le.~icaI lockup arid the F-SA fail to niatcr t the
current string.

LOOKJP attempts to find an interpretation of the current string as a word or ithrase by
f irst ca l l ing I XLOOKUP and , if that  f a i l s , M A TCHLOOKUP . If both fail , it checks for
the end of the sentence ( a period, set off by blanks). If the string is matched
and a lexical unit made , LOOKUP returns True. It the end of the sentence is
detected , if returns False. If neither , t calls BOMB to inform t h e  opera or and
term inate processing for the ‘ sentence ” .

SENSTRT sets up the lexical lookup and lexical unit construct ion by pointing IEXW RK to
the start of the text and makes a dummy lexical unit to sta rt I - -

chart; this is needed by SIFAIL to recover the first alternate of tin’ tirst rea l
unit in the sentence.

SENFIN completes the sentence chart construction by making a lexical unit with a zero
string address arid length arid linking it in; it also sets FRAMSTART to the next
available dynamic location.

MAKESENT makes the list of lexical units for the sentence by applying LOCIKUP r m ntil it
reports F a lso

L ~~~~~~ ~~ - . - .  - , .
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7.0 Glossary of ERL Target Machine Words

7.1 Trail Management Words

LTRAIL takes a pointer to a local stack word; makes an entry on the traIl if rmeces ’~ary.

GT RAIL takes a pointer to a global stack cell; makes an entry on the trail if necessary.

EDTRAIL Is called during a “cut” operation to remo ve from the trail those entries which
point l~tto a stack frame which Is being discarded.

UNT RA IL resets trailed locations and pops the trail stack as described in the des iCn
document.

7.2 P~ew Global Stack Management Words

GTNEW and its byte equivalent check that the requested space can be used without
r u n n i n g  in to  the trail stack; they take and return the same information as their parse
namesakes.

7.3 Clause and Procedure Control Instructions
E N T E R , HEA D, NECK , FOOT , NECKFOOT, CUT , NE C K C U T , N ECKCUTFOOT , RE T URN , FEHL , FAIL ,
CALL , TRY , and T RYLAST all implement the instructions as presented in the design docu-
ment In the straightforward way. In all cases , the first argument Is on lOS and the
second, if present , is on 205. FAIL implements shallow backtracking, anti is called only
from unification instructions at the instruction level (i.e. the return stack must be at that
level). BACKVV does most of a T RY LAST for ERL primitives.

7.4 Dereferencing and Goal Code Words

GDEREF takes a pointer to a cell on the global stack and dereferences it.

LDEREF takes a pointer to a word on the local stack and dereferences it , creat ing a
new undef cell if necessary.

VARACCESS is the access Word for skeleton variables.

GLOBALACCESS is the access Word for global goal variables.

LOCALACCESS is the access Word for local goal variables.

VOIDACCESS is the access Word for void variables.

ATOMACCESS is the access Word for atom instances.

INTACCESS is the access Word for integers.

MOLACCESS Is the access Word for skeleton arguments.

7.5 Match Code Instructions

GOS is like a GOTO , but keeps the same execution level.
SELECTOR is a defining Word for match code Words. It sets up an array of Word

addresses to be indexed by goal code Index values; thus each Word pointed to
handles a particular type of goal argument. When the defined Word is exe-
cuted, it takes the argument index on lOS and the match parameter(s) on 20S
(etc). When it enters the selected Word , the argument index has been
replaced by the address of the value of the corresponding goal item. The Word
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is entered via GOS to me~in;ta in the same Forth Ieiel of execution; this is neces-
sary since FAIL must b-~ ca led  only et the ir m str in - I  or Word level.

VUSKEL called to unify a skeleton with a goal variable (local ~~~ global). It ; t o ~~~~ a

molecule in the value cell.

CKFUNC takes two arguments; fails unless both are skeleton literal pointers ani ‘j et h
lIterals have the same predicate - returns nothing. UNSAVE is used to ~et t i
return stac k to the proper level before the call to FAIL , - -,inice CKF I~~~ is c- . Icd
from the instruct ion level.

SKUSKEL takes pointer to value cell on TOS , skeleton literal pointer o m  20S; . cini:s tho~
value is a molecule with same predicate , sets up fur argument r~ ctuhirmg by
pushing the return address (the address of t h e  next Word after the call to
USKEL), the current values of the 13, Y , and W registers , and the addrc~.s of t ,me L 

-

next instruction, onto the local stack , then setting B and Y from the rno~ecuhe.
Control is transferred to the m~4 ic l :  code address taken from the si~n!etom~ :te~ : m.
The stacked values w ill he restored by the RETURN instruction in t i me match
code. W is saved only for compatibility with the call from 1 OSKULREF.

hJSKEL is defined via SELECTOR to switch to the appropriate Word for the goal vo~ue
type to unity it with the ‘~kJeton.

ASLVAR is a Selector Word called to unify a lr cal match variable with a goal ~ - ~- h - ~
is an undef , atom, integer , or molecule. It stores the address of the value ~ii the
match va r i ab l e , and updates I~iXTAVL if the value was a new one built by an
access Word.

LVLVAR is a Selector Word called to unify a local match variable with a loc~ l goa l van -
able, for which a “localref” has been returned. It changes the “locairef” to an
undef and stores the address of that cell in the match variable.

ULVAR is the instruction for a local match variable, def ined via SELECTOR to av itc im to
the appropriate Word for the goal value type to unify with the variab’e.

LVGVAR is a Selector Word called to unify a global match variaoie with a hocab ~~c l van -
able by putting the address of the global variable cell in the local variable word
and discarding the localref cell (the dereferencing has already trai led the local
variable), and setting the global cell to “undef” .

GVGVAR is a Sulector Word called to unify a global match variable with a glc!~c! goal va n-
able by putting a reference to the goal variable cell in the match variable cell.

ASGVAR Is a Selector Word called to unify a global match variable with an actual value
cell by copying the contents of the value cell to the vaniahie cell.

UGVAR is the instruction for a global match variable , defined via S F ?  FCTOR to sw itch to
the appropriate Word for the goal value type to unity with the variab’ e.

LVATOM is a Selector Word called to unify a match atom with a local goal variable by
changin g the “loca lre f” ce ll to an atom cell.

2-3 1
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GVATOM is a Selector Word called to unIfy a match atom with a global variable; it trai’s
the global variab le and changes the “usidef” cc li to an atom cell.

EQATOM is a Selector Word called to unify a match atom with a goal atom by comparing
the atom values for equality.

UATOM is the instruction for a match atom, defined via SELECTOR to switch to the
approprIate Word fur the goal value type to unity with the atom.

LVINT is a Selector Word called to unify a match integer with a local goal varirb’ ’ by
changing the “iocelref” cell to an integer cell.

GV1NI is a Selector Word called to unity a m atch integer with a global va rlaL lo; it tra ils
the global variable and changes the “undef” cell to an integer cell.

EQINT is a Selector Word called to unify a match Integer with a goal integer by com-
paring the Integer values for equality.

UINT is the instruction for a match Integer , defined via SELECTOR to switch to the
appropriate Word for the goal value type to unity with the Integer.

GVUREF is the code to unify a goal with the referenced variable, which has been unif ied
with another variable; it is handled via UGVAR after setting up the stuck.

ATUREF Is the code to unify a goal with the referenced variable , which has been unified
with an atom; it Is handled via UA IOM after setting up the stack.

INUREF is the code to unify a goal with the referenced variable , which has boon unified
with an Integer; it Is handled via h INT after setting up the stack.

OSKUREF is the code to unity a skeleton, which Is the value of the referenced variable ,
with a global goal variable. A molecule is assigned to the goal variable , and the
assignment Is trailed.

2SKUR EF is the code to un i ty  a skeleton, which is the value of the referenced variable,
with a local goal variable. A molecule is assigned to the goal variable.

4SKUREF is the code to unify a skeleton, which Is the value of the referenced variable ,
with a voia variable. The stack is restored.

SFAIL clears the parameter stack and calls FAIL; It is called when an attempt is made
to unify a reference skeleton with an atom or integer.

1OSKUREF is the code to unify a skeleton, which is the value of the referenced variable ,
with a goal skeleton. The functors are compared and, if they are equal, the
match code of the referenced skeleton is executed, after saving regiotors B, Y,
and W on the local stack , and setting 8 and Y from the goal skeleton a,~d W from
the frame word of the reference skeleton. The “return” instruction of the m a t c h
code will restore the registers and return to the level that called “uref ” .

SSKURFF is a Selector Word to switch to the appropriate code to unify the goal value
type with the reference skeleton (the value of the referenced vnni~ hk’).

SKUBEF Is the code to unify a goal with the referenced variable , which has been mmn ilied
wIth a skeleton. It sets up the goal argument Index on TOS , and the sk luton
and frame words on 20S and 30S, and executes SSKIJREF to do the work.
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REFTYPE is an array of Words us. d by ULBEF to switch to the code to handle different
value types.

ULREF Is the instruction for a subsequent occurrence of a local match v,-1r ial i~ It
obtains the value of the variable , and switches to the a l’o r ’~pr c ite W i t  I to han-
dle the value type , leaving a pointer to the value cell on 1 .S  and the argument
index on 20S.

UGREF is the instruction for a subsequent occurrence of global match va miable. It uses
GOEREF rather than LDEREF to obtain the value of the variable , bu t  subs ’ -
quently operates just like Ut REF . since in both cases the value is a pointer to a
global cell containing either a value or undef.

INIT takes a global stack offset (in bytes) on FOS and aniothen on 20S. It c lears the
words on the stack from that specifi ed on lOS up to that specified on 2I.~S

LOCALINIT is like INIL , but works on the local stack.

7.6 ERL Primitives

These Words act like ERL p r o .  ‘duros , but operate on “ lower-level ’ data , such as lex~ .al
units and the output facilities of FORTH. The ERL compiler recognizes their names and
compiles them accordingly.

FEAT takes two arguments , and fails unless the first is a lexical unit , the second is an
atom which is the name of a defined feature ol the lexicon , and the  lexical unit
has the specified feature.

TYPATOM takes one argument , and fails if it is not an atom. If it is , It  is typed on the
console

TYPLEX is like TYPATOM , but  requires its argument to be a lexical unit.
TYPCR does a FORTH “CR” function to terminate a line.

LEXEG takes two arguments , amid fails unless the first is a lexical unit , the second is an
atom, and the string of the lexical unit is equal to the atom name. This primitive
is necessary because ERL-compiled atoms wi li not unify with lexical units
through the normal process.
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8.0 Glossary of GLUE File to Connect Parse to Templates
8.1 Strategy

The “glue ing ” function is performed by first converting the MN parse tree to an FilL
skeleton form in the dictionary. In this representation , lexical units ~‘n t r  stort I ic . emtoms ,
with the atom address actually being the lexical unit address, t his is tiniimmhl guous ,
sInce lexIcal units are stored early in dynamic space , and tiitis their addros~;.:~- are s’null
numb ers, between the values of SENTP and FRAMSTABT. lists are sto ned as skeletons
representing terms of the form “cons(a,cons(b ,...cons(i,nlI)...)” . Nodes ore stored is

skeleton literals , the label of the node being a functor literal. It should be noted that the
conversion process reverses the elements of a list and the branches of a node; since
they are stored in reverse order in the parse tree , this puts them back i~ the n iq it order
for template matching.

Skeleton literais are built by allocating an array in the dictionary for the goal o l e , ~‘nd
“pushing” the match code onto the dictionary after that. The “build” Words ta ke a
pointer to some piece of the parse tree and return a type indicator (0 Ion atoms , 1 for
skeletons) on TOS and a value (the atom address or skeleton literal address) on 20S.

8.2 Skeleton Building Words

BLLEX needs only to add the atom Indicator to its Input.
BLPTR checks Its Input; a zero pointer is returned as the atom “nil” ; otherwise it calls

BLLEX , BLLIST , or ULNODE as indicated by the return from P1R-TYP E.

STPAIR builds goal and match code for an item returned from a build Word. It takes the
goal code address on TOS, the type indicator on 20S, and the value on 30S. It
stores the match code using “ , “ to update DP, and uses and updates ARGNO to
put the argument number In the match instruction, it returns the next available
goal address.

BI NODE builds a skeleton literal for a node. It calls BLPTR to build its branches iand
stacks the returns), then sets up the goal code array, sets A RGNO to 0 and
calls STPAIR n times to make the match and goat code for the node; finally It
builds the three skeleton words on the top of the dictionary and returmis their
address and the skeleton indicator.

BUIST builds a nested set of skeleton literals for a list. it builds each element into a
“cons” skeleton, the last one (first one built) having a second argument of “nil” .
At the entry to the loop, the pointer to the current list element is on 105, and
the return from the last elemen t Is on 20S and 30S.

8.3 DrIver Word

This Is the Word used to fully process a sentence; it calls the Word to get t h e  text , do
lexical Iookup, and build the parse tree; then it calls BLPTR with the contents of STA R to
convert the tree. Next it sets up the initial environment for the ERL machine , puts the
returned address from BL.PTR In the first argument position, and calls POOl , the first
compiled predicate of the con’plled ERL program, assuming that that predicate has a
defining clause of the form “name(Tree):-body.”.

2 _ 3 7  
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Appendix A - MATRES II Program Listings

1.0 Top-Level System Module

C ~~= = = = = = === = = = = = = =  MATRES. 4TH — Top—level Command File = = = = = = = = )

(‘ 135 DELIM I WORD HERE COUNT TYPE CR
@ATNLEX

~LEXICON
€ FSA
(‘ LEXICON LOADED ..]
t’ COMPILING GRAMMAR . . )
8 GRAMMAR
(‘ LOADING ERL MACHINE . . ]
8ERLM
(‘ LOADING TEMPLATES . . ]
8( 6 0, 5] TEMPLATE ‘1
€GLUE
[‘ MATRES READY ! ]

2.0 Lexical and ATN Processing Module

C See Matres Glossary document for descr iptions of these Words)
C we use base) DECIMAL

CODE LIT S — ) IC )+ MOV , NEXT, ( RETURN CODE ADDRESS; USED TO COMPILE WORDS)

C Lexicon Compiler = = = = = = = = = = = = = =— = = = =—— = = —— = = = = = = = =—— )

80 CONSTANT MAXF MAXF 16 /MOD SWAP 0> + CONSTANT NWR D 0 VARIABLE NUMF
NWRD ARRAY CRMASK
40 CONSTANT SLEX SLEX VARIABLE ELEX
0 VARIABLE FPTR 0 VARIABLE ENP 1024 VARIABLE FREBYT
SLEX BLOCK VARIABLE LXPTR

CODE 2*= T S ) + MOV, S ) ROR, T ) ROL, S ) ROL , NEXT ,

FEATURE IARRAY 0 NWRD 2* CRMASK + CRMASI( DO I 0 , I 2*= 2 +LOOP DROP
IMMEDIATE EXEC NIJMF 1+! ;: CRMASK NWRD MERGE

: :WRD 2 DP +1 WORD HERE 1+ \@ 40 = IF 41 DELIM ! WORD THEN
HERE DUP 1- HERE \@ DUP SAVE 1+ \MOVE UNSAVE

:: HERE EN? ! ::WRD HERE + 1÷ —2 AND DUP OSET DUP FPTR ! 2+ DP ! ;

SC. I BRACE
: C CRMASK DUP USE! DUP 2+ NWR D 1.- MOVE IMMEDIATE ;
].SC BRACE

] CRMASK HERE NWRD MOVE FPTR 0 1+1 NWR D 2* DP +1

.; ENP 0 DUP DP 0! SWAP — DUP HERE \! DUP FREBYT 0 SWAP — DUP
0> IF FREBYT I HERE SWAP LXPTR 0 SWAP DUP LXPTR +1 2/ MOVE UPDATE
ELSE DROP DUP 1024 SWAP — FREBYT I —1 LXPTR 0 ! ELEX 0 1+ DUP ELE<

~~~~~~~~~~~~~~~~~~~~~~~~~ —rn— - — - -~~ ~~- - - - -~~~~ -- -- - ~~- - --— --. - - -  — -——a -~~~ 
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BLOCK OVER OVER + LXPTR HERE SWAP ROT 2/ MO V E ~PDAT E THEN ;

: LEX ICON SC* ~I.~A L I -  [ 1 CRMA ~~K ! [ ~C. ( FEA TU R E S  ~C. V bRACE 1 01 Ni

E N D L E X  LXPTR ~ OSET FLUSH I ‘ . S C  FEATURES SC. I ~~ J O 1 \I ’
MAXF NUMF 0 I F  I TOO M ANY F E AT ~1RF S ~:E1 - ’~N~~F MA~~F - \ \ l )  R F C ~ \ ll I LI: )
TYPE CR ABOR’I’! 1’HEN

( = =~~ — = = = = r ~~ = = —_~~ =~~ = Dynamic Storage access ing  ~~ rcl s ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 VAR IABL }~ I I1 \b .-\S
0 V AR IA I~LE N\T .\V L-

\GTNEW DUP \\  F AV I .  ~ 1023 -~\ I~ ‘ l I N U S  I )~~4 ~ I F
N X T A V L  D UP ~

‘ R’JT ROT +!
ELSE

N X I ’ A V L  ,? k 0 2 . ~ + l P . : - t  ;\\~~ [ l I P  P O F  4 N \  r - \ V ! .  ! u n - 1
GTNEh - ‘

* \~~F\1- ~

TRUNC Nx rAVL

CODE /UMOD T 2 S 1)  M LJ \ , 1) CLR , S ) + 0 D1\ , S ) T MOV , S -) 0 MOV , NEXT ,
GlAD 11)/4 /U%IOD t 1Y N B A S  @ + BLOCK + ; ( TAKE PO I NTER , R E T U R N  CORE A D D R E S S )
D~ GTAD~~~;
\D@ GTAI) \?
D+ LIT 2* , L I T  + , IMMEDIATE
\D+ LIT ~ , I M M E D I A T E  ;
D~ + [[UP D~ SW - \P 2+ ;
\D0+ DUP \D@ SWAP 1+ ;
D! GTAD ! UPDATE
\fl! GlAD \! U P D A T E
D!+ SWAP OVER GTAD 2+ UPDATE
\D! + SW A P OVER GIlD \! 1 + U P D A T E  ;
DOSET GTAD OSET

DDMOVF ROT GTAD ROT GlAD ROT MOVE UPDATE
\DDMOVE ROT GTA I) ROT GlAD ROT \MOVE UPDATE
DAMOVE ROT UTAL I ROT ROT MOVE
\DAMOVE ROT GTAU ROT ROT \M OVE
A DMOVE ROT ROT GTAD ROT MOVE UPDATE
\ADMOVE ROT ROT GTAD ROT \MOVE UPDATE

: DTOA GTAD

( ~~ — = = = = ~~~~=~~~~—-~~~ = Conditional print Words for debugging
0 VARIABLE DEB UG

DBT DEBUG 0 IF TYP1 ELSE 2DROP THEN
DB. DEBU G 0 IF . ELSE DROP THEN
DCR DEBUG ~ IF CR TH EN

A- 2 
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C ======= —_ ======= Redefinitions of system Words ==== == ===== ~— = = = = = = = = = = = = = = = =  )
C. ‘ C EXEC IMMEDIATE ;

: * . * ;

C = = = = = = = = = =—_ = = == = =_— State frame definitions ~~ = = = = = = = = = = = = ~~=== == ======= - === )
o VARIABLE FRAMSTART 0 VARIABLE SENTP
o VARIABLE FRAMBASE
2 VARIABLE CUROF

ITEM 2* CUROF 0! flU? CUROF +! VARIABLE ;: 0 FRAMBASE 0 \D+ ;
REGISTER 1 ITEM ; : LIST 2 ITEM

C Basic frame items - leave in this order <POPND assumes>)
1 ITEM LEX 1 ITEM STAR 1 ITEM ARC
2 ITEM RETRN 1 ITEM ARCNO 1 ITEM STAAT

CUROF 0 VARIABLE REGOF 0 ITEM 1STREG

NEWFRAME CUROF 0 \GTNEW DUP FRAMBASE 0! flU? ROT D!
1 D+ FRAMBASE 0 1 D+ CUROF 0 2/ 1— DDMOVE

OLDFRAME FRAMBASE 0 DUP TRUNC DO FRAMBASE

C = = = = = — = = = = = = = = —— = == ATN Processor Auxiliary Words = = = = = = = = = = = =—_ = = = =—_ = = = = = = =  )

CODE SKPTO R ) S MOV, S )-÷ TST , NEXT,
CODE GOTO R ) S )+ MOV , NEXT ,
CODE SKPS R -) S MOV, S )+  TST , NEXT,

CODE \COMP 0 S )+  MOV, T S )+ MOV, 3 S )+ MOV,
BEGIN, T )+ \ 3 )+ CMP, NE 1+ , 0 SOB,
IFGT, 1 1 # MOV, ELSE, IFEQ, T CLR, ELSE,
T -1 # MOV, THEN, THEN, PUSH J,

PRSTNM 10 — \O+ SWAP CONVERT COUNT TYP1 C I] TYP1 4 TYPI.
: DPRSTNM DEBUG 0 IF PRSTNM ELSE DROP THEN

: PWORD DUP DB. I .. I DBT 00+ SWAP GlAD SWAP DO DBT DCR

0 VARIABLE PRLEVEL 2 CONSTANT PRDELTA
PTR—TYPE DUP FRAMSTART 0 < IF DROP 0 ELSE DO IF 2 ELSE 1 THEN THEN

: PRTYP C R 1 1  I I I ! I 1 I l l I i I I I I l ] DROP PRLEVEL @ TYP1 TYP1 ;
PRLEX DUP CONVERT COUNT PRTYP I .. ] TYP1 D@+ DO SWAP GTAD SWAP TYPE

RECURS PRTPTR RECURS PRLIST RECURS PRNODE
:R PRTPTR DUP 0= IF I <<NIL>>) PRTYP DROP ELSE flU?

PTR-TYPE DUP 0= IF DROP PRLEX ELSE
1 = IF PRLIST ELSE PRNODE THEN THEN THEN

:R PRLIST [ LIST OF:] PRTYP PRDELTA PRLEVEL +! 1 D+ DO
BEGIN DUP WHILE D@÷ SWAP PRTPTR DO ENDWHILE DROP
PRDELTA PRLEVEL -! I END LIST] PRTYP ;

:R PRNODE 00+ OVER I NODE: ] PRTYP PRSTNM PRDELTA PRLEVEL ii

A- 3

~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~---- ~~~~~~~~~~~~~~~~~~~~~~ 
- - -a_ ~~~



1

DUP RI2 ) ~ D+ SWAP L 1L I I D2 PRT P TR 2 + LOO}’ PR D FLT A P R L E V E L
I EN D \C1’ I- 1 PR i\ P

0 VARI A1G i PRIREE
El NPAR ~~i Pt ~ ~KL1 2 IF CR I P A R S E  OUTPUT:  rip’ CR - I \ ”  ~~ ~ ~~~~ TU ~~

-
~

I SC. I GRMD F 1 0 I N  F

CODE F A I r  \R ~~E H E R E  2.  , U 2 STATE ! I PARSE F -\ I  LED ! I T Y P E  PR

r t t~~~~z Z —_ : t~~~~~~~~~~~ t t ~~~~~~~~~~ AT N P roces so r  Words  ~~~~ ;= ~~~~~~ : t = t : r = = =r = = = ~~~~= =r :~~~~= =
Aki F\ Fl  ARI ’\~

) P2 1 • DIJ P AEC\0  U ! I TRY A R C  # ] Ufl~ p~I DB 1’ N E W E R A M E

0 VAR ! .-\ lG.F \ i - \ i’F \~ E
PS HF\ T  \ F L  ~P- \ \ l E 1~~F R P :  0 O\ ER Dl CURO F 2 R E C I 1E  ~ — \P! 1\h~V F

112 S~~A P \ l \ F P G 1 I ’  ! F R . A M F A :~F 2 I ) ?  \ 1 \ ! F - \ S E  F !

ADV I.  \ PP P LEX 1 1 :  F AR F !
SE T STA~ L F \  112 STAR 11! ;

STPRNT’ I S PAT i- ] DBT ~ I- \ ~~i D~ 2 . DPR ~ T\M ;
STFA I L  L F A I  LE D ! ] UB T VCR (M. p FR \MI ~

LEX I I ’  4 D + [1$ 1) U P I F AI1V L FX ELSE DROP L EX DO 3 11+ DO 2 D+ P2 A I1VLE\
A RC P2 0 A R C  Dl T H EN ARC [12 2+ GOTO

I I  ? F I \ [ )  DUE P I F  DROP COUNT TYP 1 I U \ D E F I N F I 1  STATE]
T Y P E  AFC ~~F ’

ELSE ~O~\I’ PROP D U P ST .-\A T 0! T H EN

2 NEW FRAME FRAMBASE 2 PUP S.\~ E U ! RET RN 112 • P2 FR.AM~ASF
A RC’ I l \ ’~.\ V E FR \Ml G\~ E A RC 10 CU R OF 0 REGO F ~1 - \D D M OVF
S W A P  5-rAR U! GO 10

J\ 1P\[1 ARC ~ 2 + F\PST \TF ~NP T O

1TOEX \F \T1 G\SF  2 F R A M B A S E  ! STAA T LI ! FRA M BASE 2 112 R 1 FR\  1 [1÷ D!
2TO EX 4 • l.~i~~ R \  [1! S F .-VA F D O SK PTO

CMPWRD SWAP 1 1 ? + P~ 3 ‘S 0 - - I F I1TOA SWAP \24 SWA P \COMP 0=
ELSE 2DROP 0 flft\

: G T L E \ 4 W R I )  l ) \ S - \ \ U D U P S - \ V E
: N EGW R P t \ )  ~ 

1 (1 ;

TSTCAT SW-U’ ~ ~. P10 1 PUP N\~R I  ‘
* + SWAP

DO 2 . SWAP j 1 I P  I 0 -\\fl I F  ELSE DR~ P 0 TFR M THEN ,‘ +I,()Ø}~ 0 1.’
: \F.GC .1,T T~~ iI ’ -’ r -

ENI IS \ l ’  P2 t~~~



SC. L At
* S T A k  [ ‘2 ; : * ‘ l  E\ P2  2 1’ . D~ ; : * I LEX DO 3 D+ 11$

AD~’ *+ 1  Fl I P  U-N I~ STAR I”
: RI- I’ * I DIII’ LEN 111 ‘FAR 1 ’

: SETR LI F U! , F A i l .  ;
: GETR LI F 112 , I\ t\P- ’ I l F~
: LA BE l.  W C R I  P F R F  PUP \0 :1W A! ’ FF1’ 12 + RO T 14 \ MO V F F \ F E R  ,

‘ P \ \ E A : ~ 2— 2 L U ’r  ! P U R l  \~ • ‘ + — 2 .\\ P’ l ips !
NOFF p u p  o n u : ’ 2~ C T \ F C  PUP SAV E H~\F  S-U F Dl s U N S . -~VF

0 DO 1’ • L-CCP PR-~’I’ Y\ :1 -\ \ ~
A I ’ i ’ i C  ST - ~. P\ [ - ~ NIP I-NV I I .  CF- U i 2! ROT ROT U ! • Dl

: SF\ IR ~R •~\~ ’A ~~F 0 ‘T I ; \ H  - • U! ;
: SF\N PP!’ 2- .  P~ ~ . U’ INC FR-UN- -\SF 2 — NE\ TB ASE 0 • Ii! + [1! ;

UI ERO . l1 G~F 
- ‘P  P2 — 11. : , I A P  U!

R I T L  i liP Y R A \ ’P - -\:-  F . 
~~~~

‘ — — P2 • DO S W A P  ROT I’! • U!
]. SC ~~~~~

DF.FPARsE \ A R t  .\FLI -  ;
FRAMI3~ S F 0 PFP P ’- : - F F  DIII ’ 1 -~ • C I I R C I  0 2 - 1- - I 1UMOVE C

2 A i \ LI- N ‘ H \i’ -\ R . ~F RFFR\ U! ‘ FALPARSE ARC 11! NEW FRAME
I S c -  I ~- R V P -  o~ \r 0 E \ I ’H A F E  SK P S

0 flEFi ’’lR~ i~ P lI-N :

( ~~~~~ — - - - -~~~ C~~:~- I I e r  ~~~~~ l a r y  Words ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

O VAR I \BLE \ C\2
0 VAR IABP1 - \R ~~F’ i’ 1

j O I N T  S ” A T F  ~ S-\ ’. F l.~ : 2H OI \F 11\’ .AVE STATE ! ;
AK C 1 - \ F  A R - ’U 11: I ~~I 1 ~~~ U , L I T A R C I - \ F j  , \ C I 2 N U  OSE T I SC. I TSTWRI ) I I O I \ ~ ;

S T A T I \ F  l I P  S~~I1’ , ~1?R ~ U , FF1’ \NRP ~ PP 4 ! HERE SWAP ! 2 :
L I T  L I T  , , l I T  ‘- \ I N Y . \ T  F ,

CO DE LET s • TST , GFF Q, l C  • -
~~~ , \ I - \ I , THEN .

IC I C I ‘lc’\ , N U \

( s = : a r n  - - ~m pt  i c r  ‘,a .~r k1 s ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GR.\MM \i-~ WI ’hP- ~I F R E  I’ \}-~U ~ P1’ ‘

SC . \ F EAC R l ~ SC. \ \ F \ PF SC . I ACT [1F SC. [ C R \ I I F 3 O I N T
E\P H~ \~~ ‘‘ - - . 1 I~ 1’PRFS “ C.  I A F \ D F  SC. I AC TD F ‘. SC GRMDF 1 0 1 N T

SC. ( ~\ \ [‘ l
St . I -

2 ST A T E ~. O F F  ; : P C R I I - N  I F ~ I N C  C I A  FE J [1BT DPI’ PPRSTNM
C \~

‘ P\  It 3 PB LE\ P2
0 NR - ‘. - I ‘ !F’V \ P C’ 2’ 2 • NTC
0 , L I ’  5 •  ~~~\ ‘~ 1.1 t H i - [ 51,1. }- O’ -~}~~ I M M E D I A T E

— ~~~~ 
—.

~~ 
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WR D 1 .A R C F \ T  L I T  * , I M ’ ! F D I . A u E  ; : : MEM 2 ARCENT LIT * , IMMEDIATE
: :CAT 3 AR ENT LIT  * , I M M E D I A T E

TST 4 AR C F 1 1MM U Fl l I !
: PSH S A R C F \ I ’  I M \ l i - F I A T E  L I T  PSI-lENT

P C P  c’ AR F\1 l \ N t : U I A T E
JUMP 1RCFNT L I T  S K I P  , HERE 11 , W ORD ~,: UP • ! HER E.  SW A P ! I ’ -F. ’F I G  ATE

: NOT 0~ ;

SC. I ‘I ’STIsR D

!! N C O \ D  0 1— 0” I F  L I T  A N D  , THEN L I T  IFT , H E R E  4 s

LIT  S T F A L L  , A R C T Y F F .  0 S . iF  L I T  *41 , — ‘. NC O NP I TH E N
[ SC. I TST W R D ) i O i \ F  I M M E D I A T E  ;

0 V A R I  I P L E  \U.’.~.N
“ . L I F  ~~~I P  , PURE 0 , PUP 34 F F 1 . 1 ’ ~! ! WORD HER E \&  2÷  - 2  A\P UP ÷1

H E R E  ~:!~~\ !‘ ! 2 .  L I T  L I T  , 
,

“2  ~I2’~F , C  2 I F  I . I F  I l - F , HERE HI .AI’ , L I T  GTLE X 4 WR D , THEN
“1  k IT ~M P R R I ’  , “.2 \ C U \ D  1+! I M M E D I A T E  ;

— “ “ 1  L I T  \ l -H~R i ~ , “2 NN’H) 1+! I M M E D I A T E  ;

( MFMF 1 .t i  1SET 0 L I T  sAVE , I M M E D I A T E  ;
MI -I !! LG 05 FT HERE 4 — P UP PP ! PUP

B E G I N  2 ! PUP W R I L E  H E R E  SWAP E N D W H I L E  DROP
\CL’ \ I  1+ ’ LI 1’  i i \ S A \ E  , L I T  DROP , I M M E D I A T E

AND \ C O \ F  1—! L I T  A N D  , I %LM ED I A V E
OR \ C O \ P  I — !  L I T  OR , I M M E D I A T E

0 ~‘A R I . - lBLE N E C F I . G
I SCe BRA CE [ I MIIE!)! A ’E

— C sc* BRACE [ N F C E I . C  I S E T  IM’ .IIC ’I  ATE
I L I T  S K I P  , H U R l  F l I P  0 , CRMASK HERE NWRD MOVE NWRD 2* PP +7

HFI-I E S W A P  2~ L I T  1,IT , , N F GFLG 0
I F  Na ;I- LC ‘SF 1’ LIT l-.FCCA T E L S E  L I T  TSTCAT THEN , NCOND 1+ !  I M M E D I A T E

[FOC I L I T  U \ i ’C\ T  , N C C ’N U  Is! IMMEI1 I ATE

] . S C  T STWRI’

=~ \ ‘O\P 2 0 I F  L I T  ADVL E\  , THEN A R CT Y PE 0 5 = I F  L I T  SETSTAR , THEN
STATF\P :11 SK PS , ‘ ; , I M M E D I A T E

,, A R C T ’ P E  0 = I F  L I T  P O P N D  , ELSE A R CT Y PE 0 ‘ = I F  L I T  JMPN D
THF N THEN HERE S W A P  ! I M M E D I A T E

TO STA TF NP L I T  1TOF\ , L I T  L I T  , HERE , LIT  2TOEX , IMMEDIATE

SC. I AC TDF

A - 6  - 
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].SC ATNUF

PARSE SC* ATNDF PAR SE ;

Text Input = = = = = = —_ = = == = = = z = = = = a = _ = = = r :~~~~~r -  )
0 VARIABLE TXTP

T EXSTRT E LF\ 2 1÷ DYNBAS I TXTP 1SET SFNTP 1SET
TEXPI N [ . I SENTP 0 SI.~AP \ADMO\ E SE N T P 0 2 \D÷ PUP 1+ — 2 AND DUP SENT P

NXTAVL TXT P 0 - TXT P 2 — 1~ \D+ \D!

CHKPUNC DUF 44 = IF DROP I ELSE 4t IF 2 ELSE 0 THEN THEN ; U
CHKWR U B E G I N  H E R E  \ $  U -  WH I I .E R D L N  01I .N  I C l A D  ! WORD E N D W H I L E

HERE PUP I s  S N A P  \O SENT!’ 0 5 W  ‘NP \ APMO VE SE\TP 0 HERE \@ \fl+ CUP
SENTP ! —1 \Ds PUP \Et 2 CHNFt 1NC fllJP
I F  S W - N P  S F N T P  ! I -  I F  I ELSE 0 THEN ELSE SWAP DROP TH EN
32 SENT P 0 + 5~:\ ” ! ! ;

GETTXT TEX ST R T F E C I N  WORI ’  C H N N R D  END T E X F J N

( = = = = = = = == —_ = = =
~~~= = = = .= .  Morpho1o~ y PrL ’sHu~~’Words = == = = = =_— = :~~~~~~~~~~~~~~~= = = = = ~~~= = _ )

o VARIABLE FS.A .ARC 0 V.ACi .-NF L I I  FSAPT 0 V A R I A B L E  L EX W R K

DEFMATC H V A R 1A F I . E  ;: LEX WRK 0 ESA PT I I SC. \ P . A k D E F  3 DiNT
0 FNDSTATE ~~i’So DEFMATCH 1MATC H

MATCH NEW FRA~\IE 1’IATCH [ SC. I PATDEF 3 DINT OLDERAMP

ARCENT2 FSAARC 2 2 FS A ARC

TSTCHAR FSAPT 0 \DO SWAP \0+ PUP ROT + SWAP
DO PUP I \2 IF DROP 0 TERM THEN LOOP 0= ;

TSTFAIL IF FSAPT 1+! E lS E FC ’NARC 2 2. GOTO THEN ;

( = = — t t — _ Mc~rpIio1o ~,y C o m p i l e r  \~or d s = = = = = = = = = = = = = = = = = = = = = = == = = r i

PATTERN WORD HERE ‘ IMA TCH ! ~ VIP ÷ !
C SC. I I-’ATOEF SC.V ESAFE F SC.V FEATURES 3 OINT

ENDPATTE RN I “ .S C I’ -~T D EF SC. I FS.A [1EF SC. I F E A T U R E S  3 OINT

SC. I F S A D E F
:S 2 sVIII- ’. CODE IMM EDIATE ;:  D 1JP FS AA RC 2÷ GOTO
; ;  0 , L I T  0 , ‘ , STATE OSFI I M M E D I A T E

BASE ~ OCTAl,TSTCM PIL LIT S N IP , H E R E  0 , WOR D HERE \2
7 = IF HER E 1÷ 1 *sI-\NK ~ ] \CCMP 0~ IF 20001 PP 0 ! THEN THEN
HERE \0 . . — 2 AND PP +! HERE O\’ER 1 2+ LIT LIT , 

, LIT TSTCHAR

A - 7  
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BASE
A RC E NTF SA H E R E  0 , L I T  - \ R C F \ T 2  , T S T C M P I  L ;

: : A  .A }2CIYI  E I.~ SF F  .ARi ’I-NF Fs-\ I \ 1 \ 1LL- lATE
: :F A R C Y\FF IS ET A R C E \ V F S A  l \F - IFIIA TE

.- . L I T  T S F F . A I L  , STA TF N L ) L I T  SK P S  , 
‘ ; , I M M E D I A T E

LIT TSTFA IL , SC~ BRACE [ IMME DIATE

LIT SKI P HERE 0 , C R M , - \SK H E R E  NW RD MOVE NW R E ’  2÷  UP •l
HERE OVER ! .2. L I T  L I T  • , ‘ ; , I M M E D I A T E

HERE FI-~A F  ! I \ I \ ! I - 1~ i -lIE

3 . 5 ( 7  ESADEF

( =
~~~~

= ‘ - =  , - ~~~~~~~~~~~ L~ xi~ aI L o o k u p  = = = = = z ~~ = = = = = = = ~~~= = a = = = = = = r = = = = = r  )
N~ Rv F + CONS : - \ \: ‘  LEN .C\  ~. LE\CTH OF LEN 1CAL F\’I’RI)
0 VN R I-\ FN 5 1’N .P\ 0 V .A R I A 2 - I~ r~V L E X  0 \ . \ R I . \ B L E  A L T L F X
0 V A R I A P L E  L i ’~C

L E X F \ T C K  \ 2~ SWAP
I? \2 -~ 

1N:\~ 2R 2 PFCA ROT 0\ER DYER • \O PUP 32 = SWAP 45 = OR U h F
I F  DROP \C0\l!’ 0 = ELSE :AV E 2[1RL2 P DROP UN SAVE THEN

ELSE DROP 1 ‘HF\  ;

MANI LEX C P’~LE\ 0 0 STRLUN 2 l E N W R K  0 L U N L E N  G T NEW DUP SAVE
I’! + D! + 2! + Fl • 21 • \~ RP .Ai1\IO\’E F\SA\ F FI JI’ PW OR D

P V L I \ K 2 ’~ :2 ~~~ ER SWAP 3 5. 2’
B E G I N  DU~ W H I F F  O V E R  S W A P  2 Ps U ! + i D+ D O E N I T h ’H I L E  2 DROP

A L T L I \ K  4 fl~ III ;
M.ANI.F\l ’\f I s  \ :  • O V E R  ST RLEN • I • — 2  -IN! ’

0+ PUP \ l \ F  I L E N  S W A P  O V E R  PUP A L T L E X  I P V I . EX 2 P V L I  N N ROT
1- - CUP I I -  0 10 N~IRF 2* • F! :’ M A K 1LE X PUP A LTL E X 2 ! A L T L I N K  LOOP P ROP
ELSE 2DROP T I ’E \  Fl LEN ! S’IRLEN 2 1+ LEXWRK 4 ! ;

MAN’P.ATCHI-\’F USAUF 0 PUP L~ XWRN 2 — 1- STRLEN !
SW-N P ~~~~ l I EN PU!’ PV1.F\ 2! PVL I NK LEXWRK !

N E \ : T L E \ I N T  P I P  \~~
-
~ • DUP \0 25 5 =

IF DROP LEXU 2 1 • PUP IF\B ! BLOCK THEN ;

LXLOONPP SL~ \ CUP LEXB ! 51.0.2K
BEGIN PUP LE\E\TCX 0= WH I LE NEXTLEXENT ENDWHILE
PUP \@ IF MAKLF\N\’I’ 1 FLSE DROP 0 THEN

MATCH !.OON!’P I! \ T C H  PUP I F \ IA KMA TC HIJN T 1 THEN

L 
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LOOKUP LXL OOKUP
I F  1
ELSE MA I’CF! 1.0~ P

I F 1
ELSE LE ’XW RK .2 O T A F  i . I \ :- ‘-\ I.2 DUP

I F  I I ,IN RFCF.1’ , 1 A F ! . E ’- ’- T P I ’ \ - ! !  3 T Y P E  EC\!U U!F\
THEN L

THEN

SE\S T RT I X I I ’  2 L 1- \1 ~R K ! SI ‘.11’ 2 P V L E X
0 0 0 0 S C I NFI ’. F! C! • F U P  3 D~ ~W AP 1’! • VI! + F! + SENTP !

SENFIN STRLEN NET 1.F\’.RN i-SET 5.2* I~RACE CRMASK M kNI L EX P U P
P V L E X  0 P\ LI  ~~ DIJ P .2 D+ [1! N \ F .AV L 0 FR .AM ST AR T

M A K E S E N T  S F \ 5 i ’R T B E G I N  L O C K U P  W H I l E  E N D W H I L E  S E N F I N

( — U t i  I N >  1 L I ~~ 
-:

“ .SC 3 . SC ; ( THIS TO E.-2NE ” 1” , WHICH LOOKS FOR “3 “~~

D D U M P GTAD CR ‘Ni’ ClAP S N A P  i l ! ! M I ’

\DDU MP ~ AD S N A P  G TA D s N A P  \DUM P

0 D E F F A R S E  S U B P . A R S
SU B PA R SE WO R F H E R E  ‘ S U S P A R S  I U PP ~! SI J B PARS o [-I’ ‘

: FR M D M P FR AM BASE 0 DU F CU R O I :  2 + UDUME’ ;

~ > GETTXT II-\KEHl- \T PARSE
‘ > ‘  GETTNT \1INECE\I ’ SF~ PAR SF

3.0 EAL Machine
( a_ t — r —  ERR P:~eui~o - ’I,ichlne _— = t Z : ’ I

( I~1i ~ce l
: DPI PP 1
0 V A R  I ABLE P PR A~
CODE SKI’S IC R + MO’ .,  V S ) + MCI’, V 0) + JM P ,
CODE SNVTO R ) +  1ST , ‘ S \ F S  P Cl i P ,

I. STAT E OSET IM\ !FFI - l i E ; ( l EAVE COMPILE \!OUF IN DEE.
.1 .2 ST A T E ! ; RFl- ’~,U II CO\ I ’ I L E  \ !L ’I’E IN  D E E . )
1: 2 STA FE ! ; ( E N T E R  C O M P I L E  MO DE TO STORE CO D E ”
: 1  STATE L1SET !~~ . 1  \‘i’ i- ; ( RE-lI E C C ’MI’ ILE  \iO1’U!

8 C 8  12 C 1$ I U C l ~’ IB C (8 20 C 20 .‘.‘ C 2 2 2 4 C 24

( Special R~g1sN’r~ ”

o V A R I A B L E  \‘ U \ ‘ A R L - \ F L E  V i  O V A R I A B L E  I V  0 \ ‘A R )ABI E \ V 1  

~~~~ - -~~~~ -~~~~~~~~~~~~~~~
- - 

~~~~~~~~~~~



0 V A R I A S L E  ~ ‘3 \‘ -‘~R J . \ ~- I . E  X l  0 V .~R I A B L E  PP. 0 V 4 R l : , ! L S  -i
0 1 -lU 1 AF- : . E  C U \ -IL I ~F- FE 1 0 \ A F .  1 A P I ) -  ;,

~, P _ i :21 t~~-~~s ~~~~u t ~~r ‘~O d . t i i .c , , ; 1 L t ~~ : i t ~ C L . t~~I : t ~ - N
R E  I-I S L ‘I F R ’ -!

F _. \ I - ’M i D’ ‘ ‘III’ ‘ -F ‘ - I’ L- . I ! -  L’ ~~. 51-,~~ G ! A [ ~ ~~ F P 2  T Y P I
ELSE 2 .  CO h N 1’ F )  I’! TI-Il-

P _, I ‘~~~ I - - • L~~~-~252J 1 ‘.1 TY 1 1
- -02 t C I Ii Cu ,~’, L I’ 1 521j - F TY P I

P N A R  - I. :~~ : ~II-.IERT COW-,f T~ P1
F,,l~- i D  Ut~-2 ’ I ~- “L - - • ]  I:

: ~~ ~~~~ V 2 C~~-~P : ‘ 2 ’  Y I
2 .  SF 0’ ~ .21 ST T h P I  SR-NP ‘ @ SIP-I F [ (3 RO T
o no ~‘?~~i -2 . t~~ R.2T RCU EXEI LTFR\. L , I I .O CP
2RR~~P P R O F  ‘r~ I’: V I

I ,~\ ’ F2 \~~~ ~‘ T Y P F  ‘ F~ •4\ \R , ‘ P .\‘.-~R , ‘ I 101 F , ‘ P
I’ — - 1 2 S EL

F F _ T i l l  I \\T -I2 . 5 , 5 R ~~j ’ [Li p L~ I F  [[OF 22’ 11 U’.
• 2 t ’ E C  \ I T AN . ~o 1 -

~ - I - • ELF P c R
: P , ’F t: -’ V F’ :~ 2 I F  - : 1  P PFR \ !  E L s E  1 ~2F T h E N

( F~ n~ r L:  ~~r-i s)

P-LIT CO~ S~
’- ’
~

’ 9 t  , - E 5 f ’ ~ N O k 2 F H E R E  \~~ + + 5 + — 2  A N D  [2! ;
0 E S L I P  N I L  :-~~
2 F ’ . L ! P  CO’-.S c ’~~s

( Peid I. :-! • i~~~t ~o~- ’  Lc,~~t1 S~ ~i-:RO

F I F L E  :.2\srA ’-lr ;: 2 V 2 • ;
0 FIELD A F 2 F IP LI2 XE 4 EThEl ) VIE 6 F I E L D  TRF
8 F I E L D  E L F  10 F ! F L F  V V F  12 F I E L D  P E P  14 F I E L D  \ X F

( T r i l l  ~I~ r : � -
~ ;.‘-~~t ~~~~~~~~

TI-E CH ‘JR .2 1 2-!!! TR ! F!
LTSFA IL fli P V ~ I.~ I F T R P L J S H  ELSE DR OP T H E N
(ITkA ~ L [‘UI-’ I I  L .  I F  1+ T R P C o H  ELSE PROP THEN

F I N F A I L  I I  2 T I - I F .2 FR .2 O V E l  OVER -

I F DO I P 2  (11 ER O V E R  L -’ I F  FRU! ’ ELSE D [JSET THFI-I 2 +1fl~-P
EL’- ’- [[ ‘PP- I Ti0 ’. ‘~ IOP

UNT PAIL II-) .2 TR ‘ IPH R [ ‘ l U l l  -

IF PD I PS IC) I F
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CUP 1 AND IF 0 0 ROT 1- 13! + DI ELSE CUP ~ 0 0 ROT DI + D! OSET THEN
ELSE DROP THEN 2 +LOOP

ELSE 2DROP THEN TRF 0 TR I

( New Global Stack Managem ent Words)
\GTNEW NXTAVL 0 PUP ROT + PUP NXTAVL I
TR 0 L>= IF ( GLOBAL STACK OVERFLOW! ) TYPE ABORT! THEN ;

GTNEW 2* \GTNEW

( Clause and Procedure Con trol Ins truc ti ons)

GOS GOTO ; p .

ENTER VV 2 lIF ! X @ X F !  A @ A F ! Vi 0 V1F ! TR 0 TRF !
HERE DPF I NXT A VL 0 N XF ! V 0 VV I V 1 0 VV 1 I

HEAD V 0 + DP! Vi 0 + PUP NXTAVL 0 - CUP 0> IF \GTNEW DROP NXTAVL I
ELSE 2DROP THEN A 0 B I Xl 0 V ! Vi 0 W I

NECK V 0 X ! Vi 0 Xl I HERE V I NXTAVL 0 Vi I ;

FOOT VV 0 X 0 L< IF X 0 CUP V I DP! THEN V 0 X 0 V 1
AF @ A !  XF 0 DUP X I  V I  V1F 0 Xl ! V I  A 0 + GOfO ;

NBCKFOOT NXTAVL 0 Vi I VV 0 V 0 = IF HERE V I ELSE V 0 DPI THEN A 0 + GOTO ; p

CUT X 0 CUP V I VVF 0 CUP V I VV I V1F 0 VV1 I EDTRAIL + CUP V I DP I

NECKCUT V @ X !  Vi @X 1 ! V +! V @ D P ! V1 +!
V 0 X 0 V I VVF 0 PUP V ! VV I VIF 0 VVI I V I ECTRAIL

NECKCUTFOOT NXTAVL 0 Vi I V 0 VV 0 =
IF V 0 VVF 0 PUP VV ! V I V1F 0 VV1 ! V I EDTRAIL TI-lEN A 0 + GOTO

RETURN HERE 8 — DUP DP I 0+ 0+ 0+ 0 Vi I Y I B I GOTO

FEHL VV 0 V I  V1F 0 Vi !  AF 0 A !  XF 0 DTJP X I ‘ V1F 0 O X 1  I DPF 0 PP
NXF 0 TRUNC IJNTRAIL ;

FAIL VV 0 V 0 < >  IF FEHL ELSE UNTRAIL THEN UNSAVE DROP FLF 0 i~~
FEHL FEHL UNSAVE DROP FLF 0 GOTO

CALL UNSAVE CUP SAVE A I SKPTO

0 VARIABLE PTRY
TRY PTRY 0 IF CR I TRY] TYPE DUP PRSTNM THEN UNSAVE PUP SAVE FLF I GOTO

BACXVV V 0 VVF 0 DUP VV I V I V1F 0 VV1 I V I
: TRYLAST PTRY 0 IF CR I TRYLAST] TYPE CUP PRSTNM THEN BACKVV GOTO
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( lie r e t  ~
- u ~-u  - \ L ~~ I1~ C - -

R E C U R S  O P E R E F
: R GIJERI ’U HUE H - ’ Ii- PUP 1 0. lF~- [‘PP 0 -  11’ DRPI’

IILCII C \2  -R iP FI - -~i iF TH ’\ T H E N

LP1-:RF [‘III’ ‘ U - I E l U ! ’  .2 OTNEIP  PU P ROT 2 ROT F! U! FL!! R O t  DI I’ 1 TR A1 1. 1
ELSE 2 -1 R I - F  T HE \

( A c c t - : ; :; JP -~ r ! :;)

VAN \~ C l 5 1’ ~2 + C - I - - RE F
GIL ! - \ \ ’  I- ’ - X i  -~ • GUI-Ri F
Lc :-\I \~ Ci- s \ .2 •

VO l l ’ \~~~i - : ’ : -  I 1RU I’ \\ ‘[ \VI. 2- 1 L ) \ ’F i l  I ’~
A ( ‘V N -  - - 

~ - . J I i ~ u h F  R I ~ I: I - ) i  i - I  • H’
IN [\~~~F ‘C .2 C r 5 1 - C  [~Uj ’  1-101’ 0 R 0 ’ I I !  • hE

1 - 2  2 C T \ i C -  ‘- Ci  [OF Y 2- S R i ! ’  1221’ I i ! + [1!

( Mi l L  1 :52ij & I t  ~ t ruc  1 i ~~

S E L E C T O R  LOP! - ; CR lF U 0 • 2+ 2- } - \ l IC  P UP  P l C  NM
[)U[’ [1.2 I- U - I’ U 1.’~ iF P’tIO!’ 10 1 1 1 1 - N  RO T + .2 GOS

\-U SN I- DIII’ 2I’ il - \ IL  (1 !  + N’ P ~,lP -i P I)!
DF ,A I L .‘IiilOl’ 1: 11 L
CK F ( I \  DU1 ’ ~i) I5~ h E  2- E LSE  110201’ [I N S AV E PROP F A I L  T 1IFN SWAP

lEE 10 L ’ I I :  2- E l , : - ! ’  C :R C I ’ UNFAV II PROF - FAIL T H F I  = IF
E L SE l , ; \C ,A \ p PRO! i- I lL HE\

S ‘ SN EI . CI ER OVER [12 CKFIFO ’ I ll’)’ AV E PUP S A V E  , B 0 , V 0 , 1-1 0

U 2- • f2 - 1’ 1 1 • .2 0 ‘ 2 CL) [0
S F T ,ECTOI ’l H I - ~- E L  ‘ V O C K E L  PU P , , ‘ DROP , ‘ D E A l  L . ‘ VI FA I I.

‘ C K I F \  El. ,
: ASL \ AR I - N  ‘P  1 2- • !

L i I . \ A R  I - C E  2 0 NC )’ UI  •
SF. LFCT OR IiLV \~-’ ‘ - \ - ; L V -’t R  , 

‘ I .V LV .A R , 
‘ D RO P , ‘ ASI. VAII PU P PUP , ,

i,VO ’ ‘“  S N A P  N 2- • 1 1) 1 ’  ROT I [1+ Iii  ! 0 0 ROT 13! + [1! 4 N\T-\\L — !

I) 2 F F  N 0 Ii! • 11!

A C C I ’A R  .~S~C P N — ‘ [ ‘ l iP  C ’IR, -\ i i . .’ I ) l ’MOVU
5E1,k-( ’TO1 [‘CV ill ‘ C\ C \  Nil , i 1 - C\ -\I2 , ‘ DROP , ‘ A: S C V -\R [11W IWP

C’ S I -  NI’ F! • I’!
CV - I l  C U PU l P  I P N I l  ii: \ ‘[O\I
F 1~-i ’i ’~’V I i i .  DO ~. ‘ I I -  F A I L  T i l l S

SF ,L EC OR I T - \  \ )  ‘ ~
\‘,\ l \l , l \ ,-N 1’(’\T , 

‘ P R O P  , ‘ 1IQA1’OM , ‘ PEA II. PUP
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LVINT 8 SWAP DI + DI
: GVINT DUP GTRflL LVINT ;

EQINT 1 D+ DO < >  IF FAIL THEN
SELECTOR UINT ‘ G V I N T  , ‘ LV I NT , DROP , ‘ DFAIL , ‘ FQ INT , ‘ FAIL

GVUREF W 0 - SWAP LIT UGVAR SKPS
ATUREF 1 D+ DO SWAP LIT IJATOM SKPS ;
INUREF 1 D+ DO SWAP LIT UINT SKPS
OSKUREF DUP GTRAIL P1+ DI ;
2SKUREF DI + Dl ; 4SKUREF 2DROP DROP ; : SFA1L DROP 2DROP FAIL
1OSKUREF OVER OVER DO CKFUNC UNSAVE CUP SAVE , B 0 , Y 0 , W 0
D@+ D @ Y I  4 + O B !  S W A P W !  2 + @ G O T O ;

SELECTOR SSKUREF • OSKUREF , ‘ 2SKUREF , ‘ 4SK UREF , ‘ SFAIL DUP
1OSKURE F

SKUREF D @ + DO SWAP ROT L I T  SSKU REF SKPS ;
J ARRAY REFTYPE GVUR EF , 0 , 0 , $ ATUREF

INUREF , ‘ SKUREF
ULREF SWAP V 0 ÷ LDEREF DUP DO PUP 8 L> IF DROP 10 THEN REFTYPE + 0 GOS

UGREF SWAP W 0 + GDEREF CUP DO PUP 8 L> I F  DROP 10 THEN REFTYPE + 0 GOS ;

INIT W 0 CUP SAVE + SWA P UNSAVE + SWAP DO I DOSET 2 +LOOP
: LOCALINIT V 0 DUP SAVE ÷ SWAP IJNSAVE + SWAP 110 I OSET 2 i-LOOP ;

C Pr imitive predicates of ERL)

FFA I L FAIL  ;
FEAT ENTER BACKVV 0 16 HEAD B 0 0+ 0 EXEC D @ ÷ D O SWAP
6 < >  IF DROP FFAIL THEN CUP FRAMSTART 0 L—. IF DROP FFAIL THEN
DUP SENT P 0 L~ IF  DROP F F A I L  THEN
R 0 4 + 0÷ 0 EXEC D @ ÷ DO SWAP 6 ~ > IF DROP FFA IL THEN
2÷ ( SC.V FEATURES 3 OINT ?FIND I SC. 1 FEATURES 1 OINT
CUP 0= IF DROP FFAIL THEN 2+ TSTCAT IF 8 NECKFOOT ELSE FFAIL THEN

TYPATOM ENTER BACKVV 0 16 HEAD B 0 0÷ 0 EXEC D0÷ DO SWAP
6 < > IF DROP FFAIL THEN
DUP FRAMSTART @ L’ IF 2+ COUNT TYPE ELSE
D@+ SWAP GTAD SWAP DO TYPE THEN 4 NECKFOOT

TYPLEX ENTER BACKVV 0 16 HEAD B 0 0+ 0 EXEC DO. DO SWAP
6 < >  IF  DROP FEAIL THEN
CUP FRAMSTART 0 L— IF DROP FFAIL ELSE
00÷ SWAP GTAD SWAP DO TYPE THEN 4 NECKFOOT

TYPCR ENTER BACKVV 0 16 HEAD CR 4 NECKFOOT

LEXEQ ENTER BA C KV V 0 16 HEAD B 0 0÷ 0 EXEC DO . DO SWAP
6 ~~ IF DROP FFA IL THEN PUP FRAMSTART 0 L— IF DROP FFAI L T H E N
CUP SENTP 0 L< IF DROP FFA IL THEN
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B 0 4 • - a ’ 2- EXI C [12+ 11 ’ SN-li’ ~ <~~ I F  DR OP F E A I L  THEN
2.  L~. l) ’  - I )  h !  8 \ i - ~~NF’CW Fi~~E EPAII . T h E N

4.0 ER~ Compiler - Pass 1

* * * * * * * A * * * * A- * * A A * * * * * * * * * * * * * * * * * * A * * * * * * * * * * * * A * * * A * A * * * * * * * * * * * * * * * * * * * A A * *

* *
* }IV! - \F  N F l  RFS [I \ T - ,’f I ON 1 A N C I I ,\C }: 00111’ ! 1.FR *

* PASS 1 00 [ P U P  1 ,11 1 \ E 1 . F  I SIC ) -\\‘ L I N S T R U C T I O N , P A P - i  S F Q I I F \ C F

* *
* A * A * A * A * * * * * * * A * * * * * * * A A * * * * * * * * A * * * * * A * * * * * * A A * * * A * A * * * A * A * * A * * A * * * * * * * A ~ * * *
A A * * ***A **A * * * * * * * *~~ A * ,  * fl-NI I I1[1FI\ I’F I L) \ S  **A *********************************

A P
D A T , \ ( ’  i . i ’ 1 k ( \ i - \ F , ~1 I l F )  ‘ ) ;  1\T\(’\ ’ ,\R R E O \ i ’C , T 1I ’E,OF FSFL ) ‘ )

:****A **** A *********A **** T N ! ’ !  \ l T ’ - ’T i f l \S  * * A*A *A * *A * * * * * ** * *A A *A A A A *A * *A A *A * *

* 

I \PUT 1 N:- ::-: , ‘51: L \ U ’ I , A T F .  F R ! . ’
OP YES I I .  OF [ 011 2 , ‘ , ‘ : ~~: TI-MI’ i .\  ‘21 - . 151 ‘1 -

‘Oi l  [ [ ‘IL . 5 - C C  I • 2 ’)

~A \ ’5 ) ’~ I
1 1 5 C  r .-

~; 
t~ ~

S F I ’! \ i t  ( ‘ I - K R ’ ) :  ~ E R R L I V I i ’  1; f$CTLI-\1IT = — 1
:1 A

* * ** * * * *A A * * * * A * * A * *A * *  FUNFlION [ ‘ EF1NI T ION S ************AA*A *A****AA *******A *
* D E F I N E s

DE E I Ci: ( ‘ O P ’h i l  ‘, I  ~E R \ ~ )
[ ‘ FF 1511 ( ‘ S  ~\ C- ’ - ‘ 1 :  I I F E 1 N E  ( ‘ 0  ~N AiiP Ti , T.’, T3 , [ 4 * )
DE F 1 I E(  • I - I C  ~) ‘‘ ; V I F 0 1 5 F  

~~
‘ PCi’ o ‘) ;  I :EFI \ 1 :  ( ‘TOP 0

u~ - ~:i ~~
‘ os~ -~ \ I i ’A t )  ‘ )

: [1EFI\ IT ! \ ’
FRI-I ‘ b C ~1 I - ( 2 )  : (11CR 1’)

OS E-\ \
OSI’A\  = SE - i N (I’ N F L  I- N U L l .  : U2FFl I-2 N~

Pt i : ’t ~
PUS!! i’L)I’ - l i N k ,P 1 ’ S F !  P0 1’, N~ ; F I - I s H  = .1 - lUll - ~I’l .l SII - PCI’) : NRETtIRN)

POP
I D IN (l ’!ICiI P_ ’h ’) : 1  (1-Ri- i I!l1 \’~
POP I \~~. ( ‘ ! -  ~!‘t ( Ci1 PCI ’”; I’IISII POP ~

- \ l i \ T ( P I I S H  POP ) : ( R E T U R N )

TOP
TOP = P I F F F N  (i’l’:Ui ICE ” . V- \ I , I J E  i i ’ I C C I . i’OI ’) : F ( F R F T I I R \ )  S ( ‘ I I F [ t l k ’ N ’

O P’P
OFT - 1’ -- \ ’  I’Pll \ ) N I L !  : Cli

A - I l  
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************************ SEMANTIC ROUTINES *********************e****
* MAIN ROUTINE D E F I N I T I O N S
S

S = EVAL (”NULL *5_ (., ” NAM E ft ) t $ ) : (RETURN )
S.... S_ = DUMMY; CMDOUT = NAM E : ( $ ( ‘P l _ ’ NAME ) )

* SEMANTIC ROUTINES
*
P1_ VAR
Ti = POP 0; CMDOUT = Ti
VAROUT = Ti ‘ : ‘ (LE(NEST , 1) ‘ 4 , ‘G ’)
: (NRETUR N)

P1._VDVAR (NRETURN)

P1_ATOM CMDOUT = POP O : (NRETURN)

Pi_ INT CMDOUT = POP O : (NRETURN)

P 1_ CONSI : (NRETURN )

P1_ INCL (NRETURN )

P1_NIL : (NRET URN)

P 1_ LI STI
NEST NES T + 1

(NRETURN )

P1_ LISTF
NEST = NEST - 1
(NRETURN )

P1_ INC : (NRETURN)

Pi _ SKELI
NEST NEST + 1, CMDOUT = POP O

(NRETURN)

P 1_ SKE LF
NEST = NES T -- 1

(NR ETURN)

P1_GOAL : (N RET U RN)

P1_CNEK : (NRETURN)

P1_CFOOT : (NRETURN)
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TERM = ATOM
+ ( ‘( ‘  S(. SK EL I )  AR GUME NTS ‘) ‘ S(. SKELF)
+ I NULL S( . ATOM)
+ )
+ VARIABLE
÷ I INTEGER
+ 1 LIST I .

GOA L = (TERM I ‘ 1 ’  • aPIJSH O S(.ATOM)) S(.GOAL)
GOA LS = GOAL ARBNO ( ’ , ’ GOAL)

+ OPT ( ’ , ‘ *GOALS)
HEAD TERM
CLAUSE = S(. I N I )  HEAD

+ ( ‘:- ‘ S (. CNEK ) GOALS S (. CFOOT)
+ I
÷ ( ‘ , ‘ S(.CNC) GOALS S(.CFOOT)
+ I NULL S (. CNCF)
+ )
+ I NULL S( . CNF)
+ ) FULL _STOP S(.EOCL)
*
****A****A**********A*****************A*************A*A****A********* .;***

* MAIN PROGRAM
****A***A***A*********A*****A************************A*********A*A***** *A

** READ AND COMPILE A CLAUSE
CMPL

STMT = I--’

* READ A LINE AND ADD IT TO STRING “STMT ”
RDLP H

TR IM( INSTR ) OSPAN ( ’  )  ARB LINE (‘ . ‘ I NULL ) . FS RPOS (0) : F ( E O I N ~
* UNLESS IT ’S  A COMMENT L I N E

L I N E  A N Y ( ’ l / * ’) : S (RDLP)
* SQUEEZE OUT BLANKS

~ANCHOR = 0
SQZ LINE = :S (SQZ )

3ANC HOR = 1
STMT = STMT L I N E  FS
I DENT ( FS )  : S ( R D L P )

* A PERIOD AT THE END OF L I N E  TERMINATES A CLAUSE
STMT = STMT ‘

* PUT THE SOURCE IN THE OBJECT AS A COMMENT
OUTSTR = ‘ C ‘ REPLACE(STMT, 0’, i ( )~~~) 4 ) 4

* PARSE AND OUTPUT THE V A R I A B L E  INFO FOLLOWED BY A NULL L I N E
OUTPUT(. VAROUT, 2)
STMT CLAUSE :F(ERROR)
VAROUT =
DETACH (. VAROUT )

* PARSE AND OUTPUT Il-I F COMMAND A N t )  [‘AlA STUFF
OUTPU T (. CMDOUT , 2 )
STMT CLAUSE : F ( E R R O R )
DETACH (. CMDOUT ) : (CMP L)
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* END OF I N r T l ’ r
E O I N

lEND)
ERROR

CON SOL = ST\I1
OUTSTR = ‘ ****** S Y \ ’ T A \  ERROR I N  ABOVE C L A I J S E  ********** ‘

CONSOL = QI,TT ST R
(CMPL)

END

5.0 ERL Compi le r  - Pass 2

*A * * * *A * * ** * * * * * * * * * * * * * * * * ** A * *  A A* * *A * * * ** * * * * * *  * * * * * *A * *A * * *A * *A * * * * * *A A *

*

* EN - P SI  R F , P R } - S F \  1~~T I O N  LANGUAGE COM E I LE R
* PA S S  2 - R F A D  T \ T F , R M F P T - \ T E  STUFF , P R ODUCE FORTH OUTPUT
*

***** ***** ** **** ******t ** ******* * * * ** * * * * ** * *A * * * * * * * ** * * * * * * * * * * * * * ** ** * * *

* ** * * * * * * * * * **** **** ** **  1’ ‘.14 I1EFI\l T 050 * * ** * ** * * * * * * * * * * * * * * * * * * * * * ** ** *-

* 

OA [,A ( ‘ L I N K  ( N E S T , N A L L J E )  ‘ 1 ;  P. ATA ( ‘ VAR REC (5 0 CC , T Y P E , OFFSET ) ’ )
DATA ( ‘ F O R T H  1iI-\~~CH , 120.-N : , ,  O F E N  ‘ ,

*

************************* I\’IT IALI ’ -~I T O N S  *********************************4

*

b = ‘ ‘ ; t = “ ‘ “ ; c = ‘ , ‘; I~ALP H A B ET TAB ( 12~ ) L E ’ ( I )  . sp
IDT TABLE( Thl
I L’Tc ’f~~ t .I’~ = ‘FE AT ’ ; I f l T~ ’cons 2’~ = ‘CONS ’ ; IDT < ’nhl 0’ > ‘N I L ’;
I fl’t c ’t yp -iIc ~ 1’~ = ‘TYPATOM ; I D T~ ’ typ1ex 1’ > = ‘TYPLEX ’;
ID T < ’tyi t’r 1’ > ‘ TYP CR ’ ; ID T ~~’ f a i I  0 ’ ’ = ‘F EHL ’ ;
IDT < ’! 0 ’ ’ ‘ 5 F F ’ ; J D T ~~’ c S ’ ’ = ‘S ’ ; ID T ’ np 4 ’~ = ‘N P ’
ID T~~’qp 2’ ’ = ‘Q P ’ ; I D T ~~’ nnoc1 e 2’ > = ‘NNODE’ ; IDT ¼ ’pp 3’~ = ‘PP ’
IDT ‘p 1’ - ‘P ‘ ; 1 [‘1< ‘ vg 4 ’ = ‘112 ’ ; I Pr-. ‘V 2 ’ V
1flT < ’d+~t~ 3fl = ‘[“ .\TE’ ; IflTc ’lexeq 2’ > = ‘LFXEQ ’
J D T < ’dp 3’ > = ‘ D P ’

P RED T = TABLE ,I-O ” ; PREPS = TNPI ,I- : ~~~
PRE[’N.. ’FEAT ’ = ‘ F E A T ’ ; l’R F V \ < ’C O N S ’ > = ‘CON S ’; PREDN < ’NI L ’ ’ = ‘NIL’ ;
PRFI1\ ’TYPAI ’OM’ ’ r ‘T)P-\”O\ l’ ; I’NFDN’. ‘ T Y P L F X ’ - ~ = ‘l’YPLFX’ ;
PRFUN < ’TYPCR ’ ‘TiPCR’ ; [‘REDN~~’F E H L ’> = ‘FEHL’ ; PREDN- .’CUT’’ = ‘CUT ’;
P RI ’ l l N<  ‘ S’ •, = ‘

~~~
‘ . F ’ R E f l N ~ ‘51’ ’ ’ = ‘NP’ ; PREDN’, ‘QP ’ -‘ =

PREI1S ’NNOI ”F’-’ = ‘ N I’1i11 ’F’ ; P R E! 1\ < ’ P P ’ \ = ‘PP’ ; PREDN- .’P’ , ‘F’ ;
P R F ,l)5 ‘ 1 1 2 ’ ’ = ‘V C ’ ; P R E P N S  ‘V ’  ‘ = ‘V’ ; P R E D N < ’ P A T E ’  “ = ‘DATE ’ ;
P R E D N < ’ L E \ E Q ’  =
PREfl\ .~’f i P’  ‘U P’
INPUT C. TN S’l’R , 1 , ‘ C I :  T E M P L A T E .  151 ’ ’)
OUTPU T (. OUT.iTR , .‘, ‘SI’ : TEMPL.”,r F. 4 T H ’ )
OUTPUT (. CON CC ’!,, “~~

~AN C HOR 1
P I P  0; - l ID = 1 ; E l I )  0; CI I )  = Ii
P R i i f l i , S T
L I NC 2; 121 Ni ’ 4

A - I C
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S E T E X I T ( ’ E R R ’ ) ;  ~E R R L I M I T  = 1; f*STLIMIT = -1
*

*********************** FUNCTION D E F I N I T I O N S  *****************************~
* DEFINES

D E F I N E ( ’ E M I T P R ( P R E U ) ’ ) ;  D E F I N E ( ’ N E V ( I ) ’ ) ;  D E F I N E ~~’S _ (NASlE ) T 1 , T2 , T3 , T 4 ’
DEFINE (’PUSH(X)’); DEFINE (’POPO’); DEFINE(’TOPO’)
DEFINE (’TID(LET , N A M E , AR I TY )  ‘ ) ;
DEFINE (’EMIT(LINE)L’); DEFINE(’DEC(I)’);
D E F I N E ( ’ F I N _ H F A D O ’ )

(ENI3 EF )
*
* DEFINITIONS I -

ERR DUM P (2) : (ABORT)

FIN_HEAD
Ti = M A T C H ( P O P O ) ;  AR GNO = P O P O ;  13 TID(’F’,POPO,ARGNO);
T4 = ‘C’ NEW (.CID); CLOUT = CLOUT T4 b b;
PREDT<T3 = PREDT<T3> t 14 “ TRY ” 2
PUSHO Ti; Ti = 16 + 2 * (NVAR — NGLOB); T2 = 4 * NGLOB
CLOUT = CLOUT T2 b Ti “ HEAD “ POP O
CLOUT GT (T1 - LOFF, O) CLOUT Ti ~ - LOFF “ LOCALINIT “ s
CLOUT = GT(T2 — GOFF,O) CLOUT T2 b GOFF “ INIT “
(RETURN)

EMIT
OUTSTR = LT ( S I Z E ( L I N E ) , 81) L I N E  :S( RETURN )  

1

’

L = 80
EMIT_ I-

L I N E  TAB (*L) $ DEC (. L) . OUTSTR C ‘ I RPOS (0)) = :F ( EMI T _ 1)
L = 7 5  -

~~~

L I N E  = GT ( S I Z E ( L I N E ) , 75) ‘ ‘ LINE :S(EMIT_ 1) 
-‘

0U1.STR = ‘ ‘ L I N E  : (RETURN )
DEC

SI 51 — 1; DEC = . D UMM Y (NRETURN)

PUSH
PUSH_POP = LINK (PUSH_ POP, X); PUSH = . VALUE (PUSH_POP) : (NRETURN)

POP
I D E C T  (P USH _ POP ) : S (FRET!,I- [2)C
POP = VALUE (PUSH_POP); PUSH_POP = NEXT (PUSH_ POP) (RETURN )

TOP
TOP = DIFFER (PUSH_POP) .VALI-ii: (PUSH_POP) :F(FRETURN) S (NRETURN)

TI D
D I F F E R (TI [) = T U T — N A M E  b A R I T I - , )  : S ( R E T U R N )
T I D  = LET N E W ( .  $ ( L E T  ‘ I D ’ ) ) ;  I D T < N A M E  b AR I TY > = TID
E M I T ( A R I T Y  ‘ ENLIT Tin b NAM E ‘ ‘ ‘) ;  EQ (ARITY ,0) :S(RETURN)
PREDN TID = ‘R ’ NEW (.PID) ; EMIT (’RECURS ‘ PREDN<TID>)
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PREDT -, T I D ’ > ‘ :R  ‘ P R E D N T I D ’> ‘ ENTER ‘ ; PREDLS’r = LI NK (‘il !-fl5’ - ! , TID)
(RR TURN )

NEW
SF5 $1; $1 = SI + 1 : LRE [Url Is ’

EMITPR

~ANCHOR = 0
PREDT $PRED’ ‘TRY ’ RPOS (fl~ = ‘TRIO -NOT ; ‘ :F(E\IITPR _ R)
EMI T ( P R E D T ~~$ P R E D ’) ;

EM I TP R _ R-

~ANCHOR = I : (RETURNN 
-

‘

*

*********************** * S E M A N T I C  R O U T I N E S  **************** * * * ***** * * * * * * * **~~

* M A I N  R O U T I N E  D E F I N 1 T I S \
($ ( ‘ F 2 _ ’ NAME) )

* SEMANTI C RC-UF!N ES
*

P2_ VAR
T2 = ‘ v ’ INSTR; IDENT (OFFSET($T2fl :F(P2 _\AR _REF) 

—

EQ (NOCC($T2 ), 1) :SE: ,\Ii\A R)
T3 TYEE ($T2) ‘OFF’ ; OFFSET ($[2) = $13; $T3 = $13 + $ (TYFE~~~22~ ‘ kNC ’ ’;
PUSH C = FORTH L O F F S E r  ($ 1’ .’) b ALCNO “ 5” TYPE (~~T~~ ‘N - A R  ‘ ,

+ OFFS E T ( $ T2 )  c t (IDFN’T (TYPE($T2) , ‘L’ ) ‘LOCAL’, ‘VAR’) ‘ A - CF~~S , ‘, —

+ OFFOFT($T2))

÷ (RETURN~
P2_VAR _ REF

PIJSH( = FOil’[H (OFFSETL$ [2) b ARGNO “ U” TYPE (5T2I ‘REF ‘ ,

+ OFFSET ($12) c ( I D F N r ( T Y P E ( $ T 2 ~ , ‘ L ’ )  ‘ l O C A l ’ , ‘VAR’) ‘A CCES S , ‘ )

+ : (RETURN)

P2 _ VDVAR
PUSH (I = FORTH ~~, “0 , ‘ N C  I PA CCFS ,~ , “) : (RETURN)

P2_ATOM
TI IN S TR;  LI T1D (’ .-\’ ,Tl ,O);
PUSH ()  = FORTH çt  12 b ARG\O “ ‘JATOM “, t T . c “ ‘ A TO MN C C E C C

(RETURN )

P2 TNT
Ti i N S T E ;
PUSH O FS-!-lfli (T1 h ,- \ P S \ O  “ IJI\ i ” , T i  c “ ‘ 1 N T .\~’~’Es0 , 

U)

(R FT UR \ )

P2 _ CONS I
4

(RFT’IRN) 

- -~~~~~ -~~~~~~ 
-  
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____

P2_ INCL
EL _ CT EL _ CT + 1
(RETURN)

P2_NIL
PUSH O = FORTH (”’ NIL “ ARGNO “ UATOM “ , “‘ NIL , ‘ ATOMACCESS

- : (RETURN)

P2_LISTI
NEST = NEST + 1; EL _ CT 1; P U S H ( )  = ARGNO; ARGNO 0
(RETURN)

p2_LI STF
NEST = NEST - 1; T2 = POPO; Ti = POPO; T3 = ‘5’ NEW(.SID)
HIl = IDENT (H 1) OFF (T2); LOl = DI FFER (OFF (T2 ) ) OFF (T2)
H I 1  = I D E N T ( H I 1 )  O F F ( T 1 ) ;  LOl = DIFFER (OFF (T1)) OFF (T1)
E M I T ( ” H E RE “ GOAL ( T 1)  GOAL (T2) )
EMI T ( ” H E R E  [: “ MA TCH (Ti) MATCH (T2) “RETURN : 3 ” )
BIIT ( ” I A R R A Y  “ T3 “ ‘ CONS , , , “)

P2_LISTF_LP
EQ(EL_CT = EL_CT — 1,0) :S(P2_LI STF_ND)
Ti = POPO
HIl = TDENT (HI1) OFF (Tb; LOl = DIFFER (OFF (T1)) OFF (Ti)
EMIT ( ” HERE “ GOAj (Ti) t 13 “ , ‘ MOLACCESS , “)

E~ I T ( ” H E R E  (: “ MATCH (T1) b t T3 “ 4 USKEL RETURN :3”)
T3 = ‘S’  N E W ( . S I D ) ; E MI T C’ I ARRAY “ T3 “ ‘ CONS , , , “) (P2 _ L I STF _ LP)

P2 _ LI STF _ ND
ARGNO = POP O
PUSH O = FORTH (t T3 b ARGNO “ USKEL 8

, ~ 13 c “ ‘ MOLACCESS ,
(RETURN )

-:

= A R G \ O  + 4
( i .E ‘U RN )

P2_ SKELI
PUSH () = I SS T R ;  PUSH() = ARGNO; ARGNO = 0;
NEST = NEST + ~
(RETURN) F

P2 _ SKELF
NEST = NEST — 1; T2 = ; T3 = ; T4 = (ARGNO / 4) + 1 1 -

P2_SKELF _ LP
Ti = POPO; T2 = MATCH (T1) T2; T3 = GOAL (T1) T3;
HIl = I D E N T ( H T 1)  OFF (T 1) ; LOl = DIFFER (OFF(T1)) OFF(T1)
GE (AR GNO = AP GN O - 4, 0) S (P2_SKELF _LP)
AR GNO = POP 0;
GT (NEST, 0) : S (P2_SKELF_N)
PIJSHO = 14
PUSHO = FORTH(T2,T3) (RETURN)
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P2 _ SK ELF _ S
Ti = ‘5’ NEIs’(.SID); EMIT (’HERE ‘ 13); EMJT(’HERE 1: ‘ 12 ‘ RETURN : 3 ’ ) ;
T2 = POPO; T3 = TID(’F ’,T1,T4);
EMIT (”IARR-\Y “ Ti “ ‘ “ T3 “ , , ,
13 = (DIFFER (HI 1 E~~NE 3T, 1) ~H I1 4) b LOl ‘ I N I T  ‘ , ‘ ‘ )
I-I l l = EQ (NEST, 1)
PUSH() = FORTH (T3 t 11 ~> A R G \ 0  “ USKEL “ , t Ti c “‘ MOLACCESS , “)
(RETURN)

P2_GOAL
Ti GOAL(POP ( I ) ;  12 = PO FC ; 13 = T I D ( ’ F ’ , POP O , T ) ;
~ANCHOR 0

P2_GOAL _R P T i ‘ V A R ’  = ‘ G L O B A L ’  : S ( P 2 _ GOA L _ R P )
f ,A \CHO R = 1
CLOUT = CLOUT “LIT “ PREDS T3> CALL I. “ Ti “ .3 “

(RETUR\~

P2_CN E K
F I N _ IEADC
CLOUT = CLOUT “ N E C K  “

(RETURN)

P2_CFOOT
CLOU T = CLOUIi ’ (.-NRGN O * 4 “ FOOT “
(RETURN.)

P2_ CNC
FIN_HEAD ()
CLOUT = CLOUT LOFF “ NECKCUT “ : (RETURN)

P2 _CNCF
F I N _HEAD ()
CLOUT CLOUT (AR G\O * 4) “ NECKCUTFOOT “ : (RETURN)

P2_C\F
FINJ-IEAD O
CLOUT = CLOUT (ARGNO * 4) ‘ NECKFOOT ‘ : (RETURN)

P2_EOCL
DONE = ‘ Y E S ’
EMIT (CLOIJT ‘ ; ‘)

POP ~ : F (RETURN); DUMP (2)
(RETURN)

P2_ INI
LOFF 16; 120FF = F; MID = 0; Cr0 = U; SID = 0;
CLOUT = ‘ : ‘ ; AR GN J = F; NEST = 0; F I l l  =

(R E T 1JR\ ~
*

E N D E F
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*

************************************************************************~~ *****
* MAIN PR O GRAM *

OUTSTR = “ ‘  RDLN 2- ~‘NEXT ! 2 I~ 1ODE I
OUTSTR = “SC. V GRMDF”

** READ AND COMPILE A CLAUSE
CMPL

INSTR : F ( E O I N )
* READ THE VARIABLE LINES , BUILD VARIABLE TABLE “VART”

VAR L = ; NVAR = 0; NGLOB = 0
VAR

INSTR BREAK (’: ‘) . Ti ‘ : ‘ REM . 13 :F(EOVAR)
IDENT($ (T2 = ‘v ’ T i ) )  : F (VAR _ R E F )
VARL = LINK (VARL,12) - -
$T2 = VA R_REC(1 , (IDENT (T3, ‘C’) ‘F’ , ‘L’),)
:(VAR )

VAR_REF
NE (NOCC ($12) = NOCC ($12) + 1, 2) : 5 (VAR _ ETC)
N V A R = N V A R + 1
DIFFER (TYPE ($T2) , ‘F’ ) :S (VAR _ ETC)
TYPE($T2) = ‘G’ ; NGLOB = NGLOB + 1 : (VAR)

VAR_ETC
IDENT (T3, ‘G’) :F(VAR)
NGLOB = DIFFER (TYPE($T2) , ‘C’) NGLOB + 1 :F(VAR)
TYPE($T2) = ‘G ’

(VAR)
EQ VAR
* READ THE INSTRUCTION LINES AND CALL THE SEMANTIC ROUTINES

DONE =
DO_ LOOP

S_ (INSTR); IDENT(DONE) : 5(00_LOOP)
* EMPTY CONTENTS OF SYMBOL TABLE
EMPTY

DIFFER (VARL) : F (CMPL) ; $ (VALUE (VARL)) = ; VARL = NEXT (VARL) : ( EMPTY )

** END OF INPUT, OUTPUT PREDICATE CLAUSES
F- O IN

1DENT (PREDLST) : S(OUT)
EMI TP R (. V A L I J E ( P R E D L S T ) ) ;  PREDLST = NEXT(PREDLST) : (EOIN)

OUT
OUTSTR = “WM ODE O SET SC. I GRMDF”

END

6.0 ERL Templates

***** Event Representation Templates and auxiliaries as of Jan 17, 1979. *****

I The top—level procedure

do ([Tree]):— build _ER (Tre e ,ER), t ’pe ER (ER).
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I The ‘build _ER’ procedure

bu i l d _ ER ( s ( S u b j , Vbg r , ’~b j , Comp 1 , Vm ods ) , te mp (Name , E R ) ) : _
f l n d _ t _ nam e (Vbg r , Na m e ) ,
c o n s t r u c t (Name , s ( Sub j ,  VL~~r , Obj, Compi , Vm od s) ,  ER) .

The ‘construc t’ procedure

construct ( ‘DEPL OY ’ , s ( Subj , Vbg r , obj , Co mp l , Vzn ods) , [O B 1 , D1 , D T G ] ) : —
objec ti ~Subj, OB 1),
d e s t i n a t i on i  (V~ ads ,D1),
construc t ( ‘DIG ’ , Vmod s , DIG) .

c o n s t r u c t ( ’D T G ’ , L~ st , [TI , D T ] ) : —
time (L i s t , T I ) ,
date (List ,DT) .

cons truct( ’ENROUTE’ ,s(Su bj, Vbg r,Obj, Compl ,Vmo ds), IOB i,M I , Di ,DTGJ ):-
obje~ t 1 (Sub~ , O B U ,
miss ion (s L,_, Obj, Comp l , V mods) ,MI) ,
dest ination i (Vmods , Dl),
construct (‘DTG’ , V mo ds, DTG).

c o n s t r u c t ( ’ P R E C E D E ’ , s(Subj,_,Obj,_ ,_), (El ,E2)):—
build _ER (Subj, E l ) ,
b u l ld _ ER ( Obj ,  E2).

cons truc t( ’A IRCRAFT ’ ,np (Det ,Ll ,Head ,L2), (EQ, NA , SUB , SB ,SET3 ):—
equipment (Li , Head , EQ) ,
n a t i o n a l i t y ( L i , ‘ N A T I O N ’ , NA ) ,
s u bor d in a t i o ~~(L2 , SUB) ,
staglngbase(L2 , SB) ,
setspec (Det, SET).

construc t (‘ DTG ’, Vniods, (TI, DT1): — time ~Vmods , TI), date (Vmod s, DT).

Procedures for filling in template slots

date (Vmods ,slot( ’Datc= ’, [L,W,Day,Month,Year]) :-
member (pp (L, W, date (Day, M~ n t h , Year)), Vmods” .

date(_, nil).

clestination1 (Vmods , s1 -~t (’Destination= ’,Slot)):-- fi l l _ slo t (Vmods , [‘TO’), ‘LOC’,
S1~~ ).

destinatlon2 (X,Y):- destinationlC (,Y).
destination2 ,,nil).

equl pment(L lst , nno de K ,_ ), siot (’...Equt pm ent= ’, (List ,W))):—
feat(W , ‘ACRAFT’).
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nat lona l i t  y ( L i ;  I , F e- i I t i r e , : 1  o t  ( ‘  . . . N:~ I t  o r i ,~ i i t  y ‘ 
‘~ ) : —

membe r ( node (W , . l. ’~ st  , t’e;i I ~, Ft’~ I ur~- .
lUl l j o i i ,- i l i l v ( I , i :; t , I :i t t i i c - , : ; l o t  ~‘ . . . N ~l t i t u L 1 i t y ’ , I~ l ) :  rn ’ nil r O~, I. i :; t~~,

I ‘ ;i I (\~, i - o - i  1 t i r c  )

nat I oii:i I I c ( , 
— ‘  t i  i I )

ob j ec  t I ~N I’ , sI  ot  ( ‘ O I c j ~‘~~
‘ I :  ‘ , 51 o t  I t ’;  I :he,~i d N!’ , ‘ - N C R - N F l ’ ’ ~,

C o n s t  r u~’ I ( ‘ - N I  RCR . -~Fl ’ ‘ , N I’ , S l o t

s t ’’  ;~~ -c ( & I p (  , , \uni ) , S i l t  C... Ni iT l i i c c ’ i  ‘ , NunO ~ . I 
-

set  s~~- c ’~~ , n i l  .

stagi:i ;~:;c - ( i i s t , s l o t ( ‘ . . . S I : i ~~i i i ~~l 0’ ‘ , 5 i o t~~) :  t i l l  s l o t  (LIII , ( ‘ - Ni l ,
‘ LOC ‘ , S I o I ~

stag i ! I ~~ I - c -  ( — , I i i  l~

I n - i  I i c i t  1 , 1 S t  , s l o t  ( ‘ . . . o i l ’ d i  n o t  i o t i =  ‘ , S l o t  ) : I ill :-; l o t  ( L i s t  , I ’  F R OM ‘1
S I I F \ I l ~t ‘ , S l O t

siiboril i n i t  i o u  , u i l

mtsslon (s( , , , \‘ n i 1 ~~~, :;l ’t  ( ‘ M i : ; ~~ t c c i c ‘ , S l o t ) - : - -
Ii 1 l , s l o t  ( N moil s . ‘ -\ FTFI ~ ‘ , ‘ FR OM ’ , ‘ I N ’ , ‘ON ‘ I  , ‘ A C I Y  ‘ , Si  ot  1 .

ml s;; I on , ii  i i ) .

t i m e (Vmods , s l o t  C l i n t ’  ‘ 
, Sl ot)):

fltitI tini r~ Y iii~1I~ , ( ‘ -\~~ ‘ , ‘FFl!~F~ N ’ , ‘t ~V ’ , ‘(h IRIN G ’ , ‘SI \i; F’] , ‘ F ) M F ’ , S l o t ) .
t lee (Veod s~ sI o I ( ‘ I t  tue ‘ , S I t : -

find t tme (\~~ c I:; , (‘ - N I ’ , ‘ F F l ~~I i N ’ , ‘l~Y ’, ‘DU RIN G ’ , ‘SI N C F ’I, ‘4DN;’ , iot ~~.
time (Vm od I , :~ 1 ot  (‘Ii me ‘ 

, Sb I ) : —
f i lI _ sbot ( \ n i o c l ; - , [ ‘ N i ’ , ‘ I ) F l l , I F N ’ , ‘UN ’ , ‘ IhI IRINc ; ’ , ‘ S l \ c l ’ I , ‘T\NIE ’ , Slot ~~.

Li ne (Vmod:-- si ~c t (‘I i nit —~ 
‘
, SI I 1

f i I l  s l o t ( V i f l o l ; , ‘‘I’YMF’ , Sl o t .

I i nie ( ,nii .

I O I L e r  P r o c r - l i i r c -s

fill _ sl ot (Li: t , Pt’c -p lis t , F c ’ : i t u r e .  11. 1 , P 1 0 1 1 , N I P :  —
utic ’m t n ’ r ( I c U  (Li , I’ r ep ,  NI’) , i s  I
uw nihe r  ( P r e p - i , P t o - p l  t I t  ~ I c ’\ ~~~~ ( P r ep ,  I’ ! c p : l )
t e st  _ t i l ie : id ( N P , 1 - c i t  11 1, 0

fill - ~ I o 1 (1 , 1 ’; I , Fc - - i  I u n ’ , K
int ’ml o’r ( V- i , l , t s t , I c - N - I  (1%, V~i~i ,
I e l  I (W , ‘ Al ~\ U  ‘ )
I ‘‘- i t  i V , E c u

Il l [s lot  ( - \ i ’ , F ’ - i t u r c ’ , N I ’ ) :  t e s t  u t n - - n l O’~I’ , ‘ l O t ’ ) .

f t  ud .,_ e— i  I , I , ‘il : r c - i nhc ’ N , l,~ , I I 5 , \ )

ft n i  - I na me ( v~ ( , , , % , ) , N o  nc
f i t i d  t - - i t  (h’, (‘ARRIV E ’ , ‘(lED - NFl’ , ‘II EI ’ lO \ ’, ‘ENROII I F’ , ‘ F l I G h T ’ ,

L. 

-N- ,”,

_ _ _ _ _ _ _ _  ‘~~~~~~~~ --— ~~~~~
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‘ LOCATE ’, ‘PENETRATE ’ , ‘PRECEDE ’, ‘RECOVER ’,
‘RETUR N’ ], Name).

find _ t_ name (nnode (V , ),Name):— find _ fea t (W , (‘AIRCRAF T’I ,Name).

find _ tim e (List, Prep list , Fea ture , [L1 ,S~,L2l): 
- -

member (l~ (L l , ~~ , L2’I , L i s t ) ,
mem ber (~ a, Prep lis t ) ,  lexeq (W , Wa),
member (X, I,,~

),
feat (X, Feature).

member (X, LX , . . _I
member (X , L, .. L] ) :  - m emb er  (X , L ) .

I P r o c e d u r e  to  t ype  e v e n t  r ecords  ( t y p .  ‘eaves of structure)

t y p e_ ER ( t emp (N , L ) ) :  - t y ; c  r (0) , t y p a t o n ~ ‘ Event :  ‘) , t y p a t o m ( N ) , t y p e _ ER ( L ) .
t y p e _ ER ( s l o t  (5 , L) ) :  - t y p o r  (0” , t v p a t o m  C..) , t y pe _ ER (L) .
type _ ER ( I X , . .  L ] ) :  - t y l e _ ER X ) , t y p e _ ER (L ) .
type _ ER (nil)
t y p e _ ER (X): — typ lex  ( X ) .
type _ER X): typatom (No.
type _ER (S (A , B, C, 0)): - type _ ER (A’ , type _ ER (B), type _ ER (C), type _ ER (0”.
type_ER (np A , B, C, 0)): - type _ ER (A), type ER (B), type _ ER (C), type _ ER (0).
t ype _ ER (qp (A, B)): — type _ ER (A), type _ ER (B).
type _ER (dp (A, B, C): - type _ ER ~A), type _ ER (B), type _ ER (C).
type _ER (nno de (A, B)):-- type _ ER (A), type _ ER (B).
ty pe_ER (V (A , B)): — type _ ER (A), type _ ER (B).
type _ER (pp (A, B, C”): — type _ ER (A), type _ ER (B), type _ ER (C).
type _ ER (p (A)): - - type _ ER (A).
type _ ER (v~ (A , B, C, 0)): - type_ ER cA ) , type _ ER (B). type _ ER (C) , t y p e ER (0) .
type _ ER (date (A, B, C)): - -  type _ER (A), type _ ER (B), ty pe _ ER (C).

tes t_nhe8d (np ( - ‘ , nnode (W , _ ) , N , Feature): — fea t (W , Fc-~ut u re).

A- ‘~~
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Appendix B - Programming In Log ic with the Proiog Language

1.0 Introduct Ion

The following paragraphs are extracted from a provisional version of the u ser ’s Guide to
DECsystem- 1O PROLOGI and provide an introduction to the syntax and semantics of a
certain subset of logic (“definite clauses ”, also known as “Horn clauses ”), and indicates
how this subset forms the basis of F-’rolog.

2.0 Syntax, Terminology and Informal Semantics

2.1 Terms

The data objects of the language are called terms. A term is either a constant , a vail-
able or a compound term.

The constants include integers such as;-

0 1 999 -512

In DECsystem-1O Prolog, Integers are restricted to the range _ 2 17 to 2 17
~1, le.

-131072 to 131071. Besides the usual decimal , or base 10, notation, Integers m a y  also
be written In any base from 2 to 9, of which base 2 (binary) and base 8 (octal) are
probably the most useful. As an example of the notation used:-

15 2’ l l l l  8’ 17

all represent the Integer fifteen.

Constants also include atoms such as:-

a void = : ‘Algol-68’ []

The symbol for an atom can be any sequence of characters , which should be wr itten in
quotes if there is possibility of confusion with other symbols (such as variables,
Integers), As in conventional programming languages, constants are definite elementary
objects , and correspond to proper nouns In natural language,

Variables are distinguished by an Initial capital letter or by the Initial character “_ , “, eg.

X Value A Al _ 3 _ RESULT

If a variable Is only referred to once, it does not need to be named and may be written
as an “ anonymous ” variable Indicated by a single underline character.
A variable should be thought of as standing for some definite but unidentified object.
This is analogous to the use of a pronoun in natural language. Note that a variable  is not
simply a wr iteable storage location as in most programming languages; rather it is a local
name for some da ta object , cf. the varIable of pure Lisp and identity declarations in
A lgol -68-

The structured data objects of the language are the compound terms. A compound term
comprises a functor (called the pr incipal functor of the term) and a seque nce of one or

‘P This version was prepared by t uis Moniz Peraira of Divlsao de hnfuirmntica
Laboratorio National de Engenharla Civil, Lisbon , and Fernando C.N. Pereira , and
David H. D, Warren , both at the Department of Art if ic ial Intelligence, University of
Edinburgh , England. and issued April 1 978.
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more terms called arguments. A functor Is characterized by Its name, which is an atom,
and its silty or number of arguments. For example, the compound term whose functor Is
named ‘point ’ of arlty 3, with arguments X, V and Z, is written:-

point (X ,V,Z)

Note that an atom Is considered to be a functor o erlty 0.

Functors are generally analogous to common nouns in natural language. Oce may think of
a functor as a record type and the arguments of a compound term as the fields of a
record. Compound terms are usefully pictured as trees. For example, the term:-

s(np(john),vp(vOikes),np(ma rY )))

would be pictured as the structure:-

np 
~~~~ ~~~~~~

vp

John

l ikes mary

Sometimes it is convenient to write certain functors as operators - 2-ary fu u ictors may
be declared as inf ix operators and 1 ‘-ary functors as prefix or postf ix operators. Thus

It is possible to wr ite, eg.

X+Y (P;Q) X<Y +X P;

as optional alternatives to:-

+(X ,Y) ;(P ,Q) <(X ,Y) +(X)  ; (P)

An important class of data structures are the lists. These are essentially the same as
the lists of Lisp. A list either is the atom:-

[1 H

representing the empty list , or is a compound term with functor ‘.‘ and two arguments
which are respectively the head and tail of the list. Thus a list of the first three natural
numbers is the structure:-

I

,

2~

/1 1

which could be wr i t t en , using the standard syntax , as:-

.( 1 ,.(? ,.(3 .[~)))

but  which is normally written , in a special list notation, As:-

[1 ,2,3J
The special list notation in the case when the tail of a list Is a variable is exemplified

0-2
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[a ,b, L i

representmn i - -

For convenience, a further notational variant is allowed for lists of integers which
correspond to ASC II character codes. Lists written in this notation are called .~t r in~ss.
An example Is:-

“DECsystem- 10”

which represents exactly the same list A S: -

[68 ,69 ,67 , 115, 12 1, 115, 1 16. 101 ,109.45,49,45]

2.2 Programs

A fundamental unit of a logic program is the goal or procedure call. Examples ~~~~~~~
- -

glves(tom,apple ,teacher) reverse( [ 1 ,2, 3] . L) X<Y

A goal is merely a spe :id) kind of term, distinguished only by the context in i~—~ ;cIi it
appears in the program. The (principal) tunctor ot a goal is called a p redic~~e. i t
corresponds roughly to a verb in natural language, or to a procedur e name in a conveii-
tional progra mming language.

A logic program consists simply of a sequence of s tatements called sentences , which are
analogous to sentences of natural language. A sentence comprises a head and a body.
The head either consists of a single goal or is empty. The body consists of a SI’C1ft’I1C(’

of zero or more goals (i.e., it too may be empty. The body consists of a ~~~‘ q t : & ’ i ice of
zero or nore goals (I.e. , it too may be empty). If the heed Is not empty, the sentence is
called a clause.

if the body of a clause non-empty, the clause is called a non-unit -lause , and i:;

ten in the form:—

P ;- a, A, S.

where P Is the head goai and Q, A and S are the goals which make up the body. We can
read such a clause either declarati vely A S : -

“P is true if Q and R and S are t rue . ”

or procedurally 85; -

“To satisfy goal P . s,~ t i s t V  goals Q, A and S

if the body of a (:la(Jse is empty, the clause is (:alled a unit clause , and  ~; w r i t t ’ -’n in the

form: -

P.

whore P is the head goal. We interpret this ,1o~- I~~, , ,t iv& ’~
-
~ A S : —

-

-

..

~ 



“P Is true.”
and procedurally A S : -

“Goal P is satisfied.”
A sentence with an empty head is called a directive , of which the most important kind is
called a question and is written in the form:-

?-P,Q.

where P and Q are the goals of the body. Such a question is read declaratively as:-

“Are P and Q true?”
and procedurally AS:-

“Satisfy goals P and Q.”

Sentences generally contain variables. Note that variables in different sentences are
completely independent , even if they have the same name — i.e., the “lexical scope” of
a variable is limited to a single sentence. Each distinct variable in a sentence should be
interpreted as standing for an arbitrary entity, or value. To illustrate this , here are some
examples of sentences containing variables, with possible declarative and procedural
rea dings: -

(1) employed(X) :- employs(Y,X).

“Any X is employed if any V employs X. ”

“To find wttether a person X is employed,
find whether any V employs X.”

(2) derivative(X ,X, 1).

“For any X, the derivative of X with respect to X is 1 .“

“The goal of finding a derivative for the expression X w i th
respect to X itself is satisfied by the result 1.”

(3) ?- ungulate(X), aquat ic(X).

“Is it true , for any X , that X Is an ungulate and X is
aquatic?”

“Find an X which is both an ungulate and aquatic.”
In aily program , the procedure for a particular predicate is the sequence of clauses In
the program whose head goals have that predicate as principal functor. For examp le .
the procedure ~nr a ternary predicate

concatenate([X ..L 1},L2,[X ,..t 3]) :- concatenate (Li , [ 2 , 1. 3).
concatenate (~ J t ,L ) .

where ‘concatenate([ 1 .1 2,L3)’ moans “the list ( 1  concatenated with the list 1 2 is the
list L3” .

0-4
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Certain predicates are predefined by built-In procedures supplied by the Prolog system.
Such predicat es are called evaluable predicates.

As we have seen, the goals In the body of a sentence are linked by the operator ‘
,
‘

which can be Interpreted as conjunction (“and”). It is sometimes convenient to us e  sri
additional operator ‘;‘, standing for disjunctIon (“or ”). (The precedence of ‘;‘ is cuch that
It dominates ‘ but is dominated by ‘:- ‘). An example is the clause:-

grandfather(X ,Z)
(mother(X ,V); father(X ,V)) . father (Y ,Z).

which can be read as:-

“For any X , V and Z,
X has Z as a grandfather it
either the mother of X is V or the father ot X is Y ,
and the father of V is Z.

Such uses of disjunction can always be eliminated by detining an extra predicate — fo r
instance the previous example is equivalent to:-

grandfather(X ,Z) :- parent( X,V), fat her (Y ,Z).
parent(X ,V) :- mother(X ,Y).
parent(X,Y) ~

- father(X .Y).
— and so disjunction will not be mentioned further in the foliowing, more formal , de~ crip-
tion of the semantics of clauses.

3.0 Declarative And Procedural Semantics

The semantics of definite clauses should be fairly clear from the informal Interpretations
already given. However, it is useful to have a precise definition. The declarative seman-
tics of definite clauses tells us which goals can be considered true according to a given
program , and is defined recursively as follows.

A goal Is true if it is the head of some clause Instance and each of the goals (if any)
in the body of that clause instance is true , where an instance of a clause (- ‘r term) i~,
obtained by substituting, for each of zero or more of its variables, a rmw term for all
occurrences of the variable.

For example, If a program contains the preceding procedure for ‘concatenate ’, t hen  t h e

declarative semantics tells us that:-

concatenate( [aJ,[b].[a,b])

Is true, because this goal is the head of a certain instance of the first clause for ‘Con-
catenate’, namely,

concatenate( [a],[b],[a,b]) :- concatenatc([],[b],[b]).

and we know that the only goal In the body of this clause insta,~ce is true , since it is an
instance of the unit clause which is the second clause for ‘concatenate ’.

Note that the declarative semantics makes no reference to the sequencing of goals
within the body of a clause, nor to the sequencIng of clauses within a program. T i~is
sequencing Information is, however , very relevant  for the  procedural sema ’?t ’cc which
Proiog gives to definite clauses. The procedural semantics defines exactl y how the Pro-
log system will execute a goal, and the sequencing Information is the means by which

~~~~~~~~~~~~~~~~~~~~~~~



the Prolog programmer directs the system to execute his program in a sensible way.
The effect of executing a goal is to enumerate , one by one , Its true Instances. Here
then Is an informal definition of the procedural semantics.

To execute a goal, the system searches for the first clause whose head matches or
unifies with the goal. The unification process [Robinson 1965] finds the most gen-
erel common instance of the two terms , which is unique if it exists. If a match is
found, the matching clause instance is then activated by executing in turn, from left
to right , each of the goals (if any) in its body. It at any time the system fails to find
a match for a goal, it backtracks , i.e., it reject s the most recently activated clause .
undoing any substitutions made by the match with the head of the clause. Next it
reconsiders the original goal which activ ated the rejected clause , and tries to find a
subsequent clause which also matches the goal.

For example , if we execute the goal expressed by the question:-

7- concatenate(X ,V ,[a ,b]).

we find that it matches the head of the first clause for ‘concatenate ’, with X instan-
tiated to [a ,..X I) . The new variable Xl is constrained by the new goal produced , which
Is the recursive procedure call:-

concatenate(X 1,Y,[b])

Again this goal matches the first clause , instantiating Xl to [b,. X2j , and yielding the
new goal:-

concatenate(X2 ,V ,[J)

Now this goal will only match the second clause, Instantiating both ~~~~
‘ and V to 

~
j, Since

there are no further goals to be executed, we have a solution:-

X [ a ,b]
v= []

i.e , a true instance of the original goal IS:-

concatenate([a ,bI,[],Fa ,b])

If this solution is rejected , backtracking will generate the further solutions :-

X [a]
Y = [ b ]

x
V (a ,b)

In that order , by re-matching, against the second clause for ‘concatenate ’, goals already
solved once u ;ing the first clause.

3.1 Proiog Control Mechanisms

As is evident from the ailove , Prolog provides a remarkabl y simple forni of control, which
s u f f i c e s  for many  practical app lic~itions of logic programming. This point was first real-
ized at Mar~:,~itI , ’  and is the hasis of ~he programming language Prolog de”eloped there.

If we think back to the declarative semantics of clauses , it is clear t ha t  t he order of the
goals in a clause and the order of the clauses themselves are both irrelevant to the
declarative interpretation. However , these orderings are generally significant in Prolog,

_ _ _
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as they constitute the main control information.

When the Prolog system is executing a procedi,re call , t he  cl~ t .s~ ordering tl~- t -;mi - i-is
the order In which the different entry points of the p r o c e d u r e  a n ’  t~it ’d itie ~ioal . r d  : : - 1
f i* ~s the order in which the procedure calls in a clause ~it t~ t eu . ~~~ “ ‘ t t  . :  ~‘
e f f e c t  of a Prolog computation arises from the process of ‘ matchimj ” ii ~~~~ - - .~ ur~~ c l i
against a procedure entry point.
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AppendIx C - MATRES II Lexicon

1,0 Lexicon

LEX ICON
FEATURE 1DIG
FEATURE 2DIG
FEATURE 4 D I G
FEATURE ACRAFT
FEATURE ADVB
FEATURE ADJ
FEATURE NOMZ
FEATURE ACTVT Y
FEATUR E ALT
FEATURE ARRIVE
FEATURE BE
FEATURE BEFORE
FEATURE COMMUNICATION
FEATURE CONFIRM
FEATUR E CONTINUE
FEATURE CONJ
FEATURE COPULA
FEATURE DEPART
FEATURE DEPLOY
FEATURE DIR
FEATURE ART - -

FEATURE EQS
FEATURE EVA L
FEATUR E EMOD
FEATURE ENROUTE
FEATURE FLIGHT
FEATURE GO
FEATURE HEAD
FEATURE HAVE
FEATURE IMPACT
FEATURE INTRANS
FEATURE LOC
FEATURE LOCATE
FEATURE LAND
FEATURE LAUNCH
FEATURE MISSILE
FEATURE MO
FEATURE MODAL
FEATURE NUM
FEATURE N UMMOD
FEATURE NATION
FEATURE NATO
FEATURE N
FEATURE OBSERVE
FEATURE OP.D
FEATURE PASTP

C-i 
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FEATURE PL
FEATURE P05 PRO
FEATURE PRESP
FEATURE PRO
FEATURE PRTCL
FEATURE PREP
FEATURE PENETRA TE
FEATURE QUANT
FEATURE RE-ENTER
FEATURE REF
FEATURE RETURN
FEATURE RELPR O
FEATURE SATELLI TE
FEATURE SCO\J
FEATURE SCRAF 1
FEATURE S E R V I C E
FEATURE SG
FEATURE SUBNUM H

FEATURE SUPER
FEATURE STAGE 11
FEATURE THATCO MP
FEATURE TJP E
FEATURE TYME
FEATURE T E N S E D
FEATURE TOCOMP
FEATURE TRANS : 

-

FEATURE UNIT
FEATURE V B
FEATURE ~PA S S IVE

( A I R  FORCE ) I N I . ;
( AIR REGIMEN T )  I N 3 . ;

:: ( AIR SPACE) f N LOC 3 . ;
:: ( AL JAGHBUB) I N LOC 3 . ;
(ALL OF) I QI.IANT 3 .;

: ( A MINIMUM OF) [ NU\~~Oi~ 3 . ;
:: ( A R A B I A N  SEA) I N LOC 3 .;
:: ( AS FAR) I PREP EMOD 3 .;
( AS MANY AS) NU~~IOD 3 ,;

:: ( AT LEAST) I NUMMOD I
: ( AT M0ST~ ( ‘~IRI\h~[ 3 ;

:: ( BARENTS SEA) I N LOC 3 . ;
:: ( BOMBER CORPS) ( N 3 .;

( BUFF A) [ N NA T O ACRAFT 3 .;  H
:: ( BUFF B) I N NA TO ACRAFT 3 .

:: ( BUFF C) I N NATO A C R A F T  I
:: ( BUFF 0) I N NA T O ACRAFT I

— :: ( B U FF (
~ ( \ \~~~ -\C RA FT .;

( CAPE VERDE ISLANDS) ( N LOC 3 .;
:: ( COMMAND AND CONTROL) ~~~ 3
:: ( CONTROL AN [) REPORTI\~H [ AtN I I

C-:’
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:: ( EAST OF) I PRE P 3 .;
:: C GULF OF A DEN )  I N LOC I .;
:: ( GULF OF ~~~~~~ I N LOC I .;
:: C HEAVY BOMBERS ) I N PL ACR A FT I . ;
:: ( HEAVY BC~~ ER) [ N SG ACbAFI  3 . ;

( IN  CONJ UNCT I ON ~‘I TH ) I PREP 3 . ;
:: C I N  C O N N E C T I O N  h’I TH ) I PREP I . ;
:: C IN  REACTION TO) I PREP I
( INDIAN OCEAN ) I N LOC 3 .;

:: ( LACCAD IVE ISLANDS ~ I N LOC 3 .;
:: C M A L D I V E  i SLANDS )  I N LOC I
:: ( MANY OF) I QUANT I

( MEDIUM BOMBER) I N SG ACRAFT I .;
:: C M E D I U M  B OMEER S~ I N PL A CRAFT I . ;
:: ( M I R A G E  I I I )  I N TJPE ACRAFT I
:: C MOST OF .i I QIJANT I •; —

C N A T I O N A L  GUARDS ) f N I
C NATIONAL GUARD ) N I .;

:: ( NONE OF) I QU ANT I . ;
:: ( NORTH OF) I PREP .1 .;
:: C NORTHEAST OF) I PREP I . ;
:: C NORTH WEST OF) I PREP : 

-

:: C RED SEA) I N LOC 3 .;
:: C SAUDI ARA BIAN) I ADJ NATION 3 . ;

( SEA OF CRISES ) I N LOC I
:: ( SEYCHELLE ISLANDS ) I N LOC I .;
:: C SEYCHELLE ISLAND CHAIN) I N LOG I

C SMALL SCALE) I ADJ I i tC SOME OF) ( QUANT 3 .;
:: ( SOUTH AFRICAN )  I ADJ N A T I O N  3 .;
:: ( SOUTH OF) I PREP 3 .;
:: C SOUTHEAST OF) I PREP I
:: ( SOUTHWEST OF) I PREP 3 .;
:: ( SOV I ET UNION )  [ N LOG NATION 3
:: C ST HELENA ) I N LOC 3 .;
:: ( TEST RANGE) I N LOC I .;

C ~WEST OF) I PREP I
:: ( WHITE SEA) [ N LOC I .;

A (A R T ].;
: A3 13 I N SUBNU\I I .

:: AA I ADJ ] .;
:: AB OI JT A DV B EV A L 3 . ; H
:: ACFT ~ N ACRAFT 3 .;

ACTIVE I ADJ ACTVTY I
:: A C T I V I T Y  I N \U-\12 ] .;
:: ACTY I N NO~h’ I .;
:: ADDITIO\A L I A P T REF 3 .;

ADX [ N NONE I
:: ADZ I N 1 OC ) .;
:: A F R I C A N  I ADJ I

C-3
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:: AFTER I PREP TYME SCONJ I .;
AGAIN ST I PREP FMO~ 3 ;

:: A I R - T O  SURF A CE I A DJ ] . ;
A I R  I N I . ;

:: AIRBORNE I ADJ FLIGHT 3 . ;
:: AIRCRAFT ( N ACRA FT 3 .;

ALEX ANDRIA I N LOC 3 . ;
:: ALL I QUANT 3 . ;

ALONG I PREP EMOD 3
:: A LTITUDE [ N SC ALT 3 .;

ALT ITUDES I N FL ALT I
:: AN (ART ) . ;
:: AND I CONJ 3 .;

APPROXIMATEL Y [ A D V B  ~\ A L  3 .;
APR 1 ~ TIME MO I .;
APRIL 1 N TIME MO I
ARE I BE COFLL.A TENSED I
AREA [ N SG LOC I .;

:: AREAS I N FL LOC 3 .;
ARRIVED I VB PASTP A R R I V E  I C VB TENSED A R R i V E  I .;

:: AS I PRTCL I
:: ASSOCIATED [ ADJ 3 .;
:: ASM I ADJ I
:: ASW I ADJ I . ;
:: AT I PREP EMOF TIME I
:: A T L A N T I C  I N LOC 3 .;

AUG I N TYME MO I , ;
:: AUGU ST i N TIME MO I
:: AUX iLIARY I ADJ 3 .;

AV I A T I O N  I N NONI 2
A-4 I N T J F E  .A C RA FT 3

:: B-75 I N TJ F E A CRAFT 3 . ;
B— ~‘5S C N TJPE ACRA FT 3

:: B-60 I N TJPE ACRAFT 3 . ;
:: B— 60’S I N T’FF .ACRA FT 3 . ;
:: B-6 1 [ N TJPE ACRAFT I . ;

B-63 I N TJPE ACR A FT I
B-~ 3’S I N TJ FE ACR A FT 3 .;

:: B— 6 3S I N TJP E ACRAFT 3 . ;
B—6 7S f N TJPE ACKAFT 3 .;

:: B- - 80 I N TJPE ACRAFT 3 .;
:: B -TYPE I N TJPF ACRAFT 3 . ;
:: B-TYPES I N TJPE ACRAFT 3 . ;

BACTERIOLOGICAL I ADJ I .;
: BA! KO\ ~ R I N LOC I
:: BARFLY [ N NATO ACRAFT I

BASE I N LOi’ 3
: BC254 ( N S T I B N U M  3
:: BE I BE COPULA I . ;

BEACON I \ ro \ C R A F T  3

- 
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:: B E A G L F  [ N NATO ACR .AFT 3 .;
BED I N 3 .;

:: BEEN I BE C f l D I 1 L A  PASTP 3
BEETLES I N I .;
BEFORE 1 PREP TIME SCONJ I
BEIN G C BE COPULA PRESP 3 .;
BETWEEN [ P R EP E~-TOD TIME 3
BOMBER I N SG - \ CRA FT 3 .;
BOMBERS C N PL A CR AFT 3 .;

:: BORDER [ N LO I .;
: B O U N F U F  C ADJ 3

:: BUFF [ N ~AT O A C R A F T  I
:: BUJU M BUR A [ N LOC 3

BUTTER I N N -’JC ACR.AFT I . ;
BY [ PREP EM OD TY~.IE I . ;

:: CAP ETO ~ \ - B . A S E P  I ADJ I . ;
:: CAPETO%~N I N LOC 3 .;
:: CAPSULE [ N 3 .;

CEN TER N LO C 3 . ;
:: CENTRAL I AD- .J I . ;
:: COAST I N L O C ] . ;

C O L L E C T I O N  [ N NC\1
COMBAT [ N N L ’M
COMBAT .A\ F j N 3
COMBAT ANTS N FL 3

:: COMMUNICAT ION [ N 3
:: COMPLEX I N LOC I
:: CONDUCTING I VB TR A NS P R ESP F L I G H T  ) .;
:: CONDUC TED I VE TRANS PASTP F L I G H T  3 1 VE TRANS T E N S E D  F L I G H T  3 . ;
:: CONFIRMED [ VB TRANS PA STP  C O N F I R M  3 I VB T R A N S  T E N S E D  C O N F I R M  3 . ;

CONGO I N L OC 3
C O N T A I N I N G  I N B  TRANS P R E SP 3 . ;
CONTINUED I VP TRANS PA STP 3 I N B  TRAN S TENSED 3 .;

:: CONTINUIN G I VP T R A N S  P RES P D I R  C O N T I N U E  I .;
CONTINE NTAL ADJ I .;
CO N TROLLER I N I .;
CORNER I N I .;
C O SMO V R O~ F I N LOC I
COSM O S—605 [ N S A T E L L I T E  3 . ;
COSMOS- o~ 9 I N SATELLITE I . ;

:: COSMOS—~ Oo [ N SATELLITE I . ;

:: COSMOS—T~~ I N SA TELLI TE 3 .;
CRAF T I N SCRAFT 3 . ;
CI R R EN TL I  [ ADV F~ R E F  TIME 3
P-~G-\s C L~ I N LOC ] .

DEC [ N T IM E \N~ 3
: : DECEMBER 1 N TIME MO
:: DEFE\~ INE I AUG 3 .;

DELTA-CLASS I -\DJ I
:: DEPARTED I VP T R -\ \~ PASTP DEPART I I V P FR-\ \ ~ T E N S E D  DEPART I .;

C- S
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DEPL OYED [ VB lRA N ~ PASIP DEPL OY I I VP TRANS TENSED D E P L O Y  . ;
[)F,F LOY \1FNI’S I N FL N OM. - I . ;
D E S T I N A l ’ I O N  [ N j

: I1IVI S IM\ I N 3 .
Di I BOUT1 N t .ci :  I .

DO~NED I V B l ’R - \ \S  F ’ - \ STP I I V P T R A N S  T E N S E D  ] . ;
DURING [ PRI G ’ E \ IGl l  l I I G 1~ 3
E1~~S 10 1 N S I T R N I I M I .

EADU I N NATION ] . ;
EAFAF [ N NATION S E R V I C E  I
E A R L I  PR I A I R  F I V M F  RI G :  ] ;

: EAR L ’~ I -\I 1VB L I M P  I I A LL )  T I ME I . ;
EARTH C N 1
FAST I A DV P D I R  3 1 AD .J I ;
EASTERN I AE)J 3 . ;
EGYPT IAN I - N I ’ .’ N A T I O N  I
El CH1’ I N I T M  3 .
E N R O U l E  [ - \ I ) j  L ( ’ ~~ \)j’ FNI-D)Il lF I —
ENT IElBE 1 N L(N 3 . ;
EQU I P M F\ l ’  I N 3 ;
F.T HF I N LOC .1
E 1 H I O P I A \  [ Al l .) 3
EXER CI SF C N \o\1: I . ;
F — I  L N F J P F  A i T R A F T  I

: F- -4 E I N l J P F  \ C R.AFI ’  I .
F SF C N TJI’l- .‘& U R A F I ’  I . ;
FEB 1 N TI ME MO I
F E B R U A R Y  1 N T  I M P MO 3 . ;
FERRY I N ] . ;
F I G H T E R  BOM U ERS I N PL ACRAFT 3 . ;

:: FIGHTER ( N SC ACRAPT 3
: FIGHTERS ( N FL ACRAr r I .

FIRED I VP TRANS I’ASI’P I . -\I JNGII .1 1 \-‘P TR- \NS TI~Y S I I )  I,Al IN( ’H I

:: FLEET I N I . ;
FL EW I V U 1 l ~- \NS T EN SI - !)  D I R  T L I G H T  I
FLI GHT I N SU ~i ) M. 3
F L I G H T S  [ N FL NOM : .
FLOGG E R [ N NA TO A C R A F l ’  3

:: F O I ) DF R I N N \ T O  A C R - \ F T  J .;
: F OI ,LO ~ I N C ~~G\. J 3

FOR I PR IG ’  I
: : FOUR I 

~
. I RI I .

FR ESCO C ~ N -Nit) .-\C RAFT 3
: FRO M I PR I P EMOI T l \ M  F 3

GENERAl . I A I L 1  3
: GROu P [ N 3
: C~I’LU BASED I \I~ I

GULII ( N l O ~ 
‘ 3 ;

HAD C HAV E F I N S L I l  3 ( VP ‘I~~-\\S PASI ’P 3 1 VP I’RAN S 1’F,NSI’I) I
HA I F.-) I N LOC I .



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - —~~~
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:: HAS I HA VE L I \ : ED I [ N - B TRANS T E N S E D
HAVE I PAN P ( HAVE ’ T E N S  Eli  I I N P  T R A N S  I ( N B PP \ \~ TE NSED I
HAVIN G I N :  T R \ \ S  P R I T H ’  I
HEAD iNG I \ B P R IT S P D i R  H E A D  I

: H E R M E T I G :~LLI  i Ai - VB 3 .
: : H O ME PASI :  I N L OU I . ;
: H O T I L :  [ \ I N M P  UN I F

HOURS 1 N I N N S -  U N I T  3
: HR ( N 1’ NM 1- UN I U I ;
: : IL— .T~i I \ T)I’E ;GRAF r 3

I N  I P R E P  FN~~D I .

I N P E F E N G i  N I  ~~~ I .

I N  FO RMFI )  I N F- T R A N  S F A S T P  F L I A T COM P ( ‘OM\1L I N 1 CAT I 0)’ 1

I N B  TU - \ N S  T E N S E D  THATCOMP L T O M M I I N  I C A T I O N  3
: I N T E L L I G E N C E  j N \ O\ L ’  3 .

: 1) - TO ( I’ I-’ I I ’  E\ IOI i  I .

I\\ ’LVI NG [ V P T1-T~~\S P R E S P  3
1 R A N I  -\\ [ . \FJ N . -VL I ’\ I .

: IS [ BE I T O F U L - \  1 I N E P  3
ISP- \EL I N LOU N A T I O N  I
I S P - N E L l  I Al l .) \A T I O ~ j
.I A N  F N T \ M F  CO ] . ;
JANtI .-\RI N TIME MO 3
JE J B A I N LoU 3

: J U N  I N U N’ M E \5 ‘- ] .
: .JUNE I N TN Ml MO ] .

JUL 1 N TIME MO 3
: JULY I N TN ME MO I
: JUST I - A n N E  I .

: KA 1’I {M -\ \ DU I N LOU 3 .
: NU.U: [ N ( I F L U N I  I .

: K )  N - 3  ( N 50 U \ ) i \ )  1 .

K I\I.A [ \ LOC N At I ON 3
: K i - ’\ Y A N  I -AUG N A T I O N  I .

KF IR I N T.U’E ‘ O R N U I .

NI L IR S-I N T - S [ N I I .  U N I T  3
KI ‘~~HAS- \ I N 1.0— I
KM I N SC U N I T  I
K M ’~ t N I’ ) .  I ’\  I T I .

: L.A{ (’AFIVE’ S 1 N LoU 3 .

LANPED I NP l ’ A : I P  1, -N A I l I I N—B ‘l’ ITNSEL ) LAND I
L \\ I ” C - N . S N 10’ I
LAST I A l ’.: ]
LA T I -  ,- \ f l , i T M I ’ 1
L A I N,  H N ~ I Vi i  TI- \ \ : ,  P A ’ T P  I - ~ I I \ ~ ’ Ii  3 [ VB T R A N S  T E N S I G )  L A U \ C C  I
L E P A N ’  N I N 10, ’ N A I I O N  3

:: I . I F Y A \  I APi  \ ) F l O \  ~
L I V  ING 1 \P~ I

: : 1. 0 -CI F ! I - N IL !  V P  UP \ \ S  I A :  I F  LOC .-\ ’I ’ F I [ Y B T R A N S  T E N R E D  L O C A T E
: I , U\ N .‘ G I N ~ I F E L l  I I -  I .
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LUNAR I ADJ I
MALA GASY I N LOC 3 .;

:: MANEUVERABLE I ADJ I .;
MANNED I ADJ I

:: M A N N  I QUANT 3 .;
MAR [ N TIME MO 3 .;
MARCH [ N TYME MO 3

:: MARITIME I ADJ I
:: MASSA W~ ( N LOC 3 .;
:: MAUR ITIUS I N LOC I .;

MAY I MODAL 3 [ N TIME MO I
:: METERS C N PL U N I T  I .;

M I D  l I E U ] . ;
M I G — 1 ”  [ N TJP E A C RAFT 3 .;

:: M I G - 2 1  I N T J PE ACRAFT I . ;
M I G - 2 3  I N T J PE ,ACRAFT I

:: MILES I N UNIT I . ;

MILITARY I ADJ I . ; —

M I S S I L E  I N M I S S I L E  3 . ;
:: M I S S I O N  I N ,\0\tZ 3 . ;
:: Ml. 28 1 N TJPE ACRA FT I .;
:: MOGADISHU I N LOC I .;

MOMBASA-BASED I ADJ 3 . ;

MOMBASA I N LOC J .;
:: MONTH I N TIME I
:: MORNI NG I N TIME I .;

MOST C QUINT I
MU SHROOM I N I .;
NAIROBI—BASED [ ADJ I

:: NAIROBI I N LOC I .;
:: N A T I O N A L  I -NO.1 3 . ;

NATURE ( N ] .;
NAUTICAl .  I ADJ I . ;

:: NAVI GATIONAL 1 ADJ I .;
:: NEAR I PREP EMO D I . ;

NEPAL I N LOC NAT i ON 3 .;
N I G E R I A N  I ADJ N A T I O N  I .;
N I N E  I N U N! 3

:: NM ( N SC U N I T  I .;
NMS [ N PL UNI T 3 .;

:: NO I QUANT I
NORMAL I ADJ 3
NORTH I A DVB DIR I I ADJ I .;
NORTHEAST I A IR B DIR I I AUG 3
NORTHERN C MU I .;
N OR THS~FST I A I ) Y P  D I R  I I .AD. T 3
N O R T O N  FS ’F F I-’N ( DJ I
NOTED ( VP T R A N S  P A s V P  O B S F R \ E  3 [ VP TRANS TENSED OBSERVE I . ;
NOV ( N T~~M E MO 3

NOV E MBER [ N TIME MO 3

C -
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:: N I A N . 1A [ N LOC I
OCEAN C N 1.01’ 3 . ;
OCT I N’ TN \I F AK ) I

OCTOBER ( \ A M P  MO I
OF I PREP I
ON I P REP EMOD 3
ONE C N UNI 3 .; L
OPEN I ADJ 3
O P E R A T E D  I N B  PA ST P AC1 V NI 3 1 N B  TENSED ACTVT\ I .;
O P F R A T I \ G  C N O  I ’PESP AC1~~TA ’ 3 .;
OPERAT IONS I N \OMG 3 . ;
ORBIT I N I O U  I
OVER I PREP I ’ ~1O! l 3

P E N E T R A T E D  [ VP T R A N S  P .-\STP PENETRATE I I VP T R A N S  TENSED PENETRATE 3 . ;
P E N E T R A T I O N  I N N ON ! :- : 3
PERFORMI NG I N B Tl.~-\\5 PRISI ’ .- \U T VTY I
P E R I O D  I \ T A M E  I . ; F
PH NTO \ I I N N -\ 10 A:R -N P F I .;
PILOTS I N FL I . ;
PLFS F T ) J K [ N LOU I
P O SSI C L E  I -\DJ E VA! .  3 .

:: POSSiBLY I A I N H  EVAL I .;
PRECEDED I VP TRANS PASTP BEFORE I I N - B TRANS TENSED BEFORE I
P R I - U F I I I T S  [ N B  UR-\ \~ TENSED BEFORE I

PRESENTLY I A U V U -  REF TIME 3 . ;
: PRETORI.A - BASED [ .N LU I
:: PRETORIA [ N LOC I .;

- j : PREVIOUS I 10.1 REF TIME I . ;
:: P R E V I O U S L Y  I AD A - B REF TIME I . ;

PRI NIAR I LA I A I1VB EVIL 3
PROBABLE [ AUG EVIL I
PROBA B LY I IO N B EV IL I
P R O C F F I ’ l ) ’ G [ VP P R I S F  D I R  F L I G H T  3
RA ’

~S [ N FL 1 . ;
R F C O \ ~~A I ~~S \ \ C E  I N \O\I.’ I . ;
R E C O V E R A B L E  F AlL ! I
R E — E N ’U E P [ N P  T P A \ 5  TENSED RE E N T E R  I
RE G 1’ 1 N SO I

: R E G I V I ~ .T [ N so I . ;
REG I \I I :NT: ;  [ N FL I .;

: RFM ,\ IN I C C ! N S , -\ TENSED 3
: RE”! NI ‘ ITO I C FUl l TENSI’l ” 3 .

REPORtI\~ I YB ‘IRANS PRESP I .;
R E P R 1 : S } N 1 ’ I N T  I \ B  T O - A N N  P R F S P  I
P F U l ’ - T ~I-~D I V U N \ :~TP R E T U R N  3 [ N B 1’ENSED R E T U R N  I
RF1 IR NI \G  [ YB I ’ R F S P  R F ’U U R \  ]
RO T I \ t I
R I Y \ I UT I N H-  I

: ROUTINE IA I -\ 0 1 1 -

.5 1 - ’ ~4 B I N ~‘ N F \ I R !  3 .

C —
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:: SASS4 ( N SUBNUM I .;
SA622 [ N SUBNU N I I

:: SAFAF I N NATION S E R V I C E  I .;
:: SAFLT I N NATION S E R V I C E  I . ;
:: SATELLI TE 1 N S A T E L L I T E  I .;
:: SAM-) I N M I S S I L E  I . ;

SAME ( A D J ) . ;
:: SC462 I N SUBNUM 3 .;

SCRAMBLED [ ADJ I .;
:: SEALED I ADJ I
:: SEP I N TIME MO I .;
:: SEPTEMBER [ N TYME MO I .;
:: SEYCHELLES I N LOC I . ;

S I B E R I A  I N LOC I
:: SIMULATED I 10.1 3 .;
:: SINCE C PREP EMO D TYME I .;
:: SIhAH I N LOC I .;
:: S I X  I NUM I .;
:: SKYHAWK [ N NATO ACRAFT I .;
:: SOETLANDED 1 VB TRANS PA STP LAND I I VB TRANS TENSED LAND 3 .;
:: SOMALIA [ N LOC NATION I .; it

:: SOM E I QUINT I . ;  I ’

:: SOUTH I ADVB DIR I I ADJ I .;
SOUTHERN I ADJ I .;

:: SOUTHEAST I ADVB DiR I I ADJ 1 .;
:: SOUTHWEST I ADVB D I R  I I ADJ I .;
:: SOUTWESTERN [ ADJ I .;
:: SOV I ET I ADJ NATION I .;

SOYUZ I N SATELLITE I .;
:: SOYU2— 2 2 I N SATELLITE I .;

SOYUZ --28 I N SATELLITE I
:: SOYUZ — TYPE ( AD J SATELLITE ] .;
:: 5P26 5 [ N SUBN U M I

SPACE I N LOC I .;
:: SPACECRAFT I N SCRAFT I .;
:: SPACEFL 1GHT I N I .;
:: SPORES [ N I  .;

S R — 7 1  I N TJPE ACRAFT I .;
SS-1t I N M I S S i L E  3 .;

:: STAGING I V S PRES P STAGE I .;
:: STRATEGIC I ADJ I .;
:: S T R I K E  I N NOM I

:: S T R I K E S  I N NOMZ I

:: SUAM C N LOC I .;
SUBMARINE I N I .;
SUBORDINA TE 1 AUG 1 .;

:: SUCCESSFIII.LY I A DA P EVAL I . ;
:: SUDAN ( N LOC I .;
:: SUDANESE I ADJ I . ;

:: SUPPORT I N NOM. - I

- - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---. ~ ~~~~~~ 
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:: SURFACE-TO-AIR [ ADJ 3
SURFACE [ N LOC I . ;

:: SIIRGUT I N LOC I .;
:: SURVEI LLANCE I N NC’ - 1Z I .;

SYRIAN [ ADJ NATION I

:: TAIPEI I N LOC I .;
:: TAIWAN [ N LOG ):ATION I
:: TASK I N N OM Z I .;
:: TEN C N U M I .;
:: TESTING [ N B TRANS PRESP I .;
:~ THAT [ CONJ I C RELPRO I C ART REF I .;

THE [ ART I . ;
:: THESE [ ART REF 3 . ;
:: THEY I PRO ] .;

THEIR [ ART POSPRO I .;
:: THIRD I ORD I .;
:: THIS ( ART REF I . ;

THOSE C ART REF 1 .;
:: THREE I NUM I . ;

TIME I N TI ME I . ;
:: TO I PREP EMOD I
:: TOBRUK 1 N LOC I . ;
:: TODAY I N REF TIME I .;
:: TORORO I N LOC I .;
:: TORTOISES C N I .;

TRAINING I N I .;
:: TURNED I VP PASTP DIR I [ VB TENSED DIR I .
:: TURNING I VB PRESP DIR I .;

T1J-95 I N TJPE ACRAFT I .;
TWO I NUM ] .;

:: TYRE [ NL O C ] . ;
TYURAT AM [ N LOC I .;
11-43 1 N TJPE ACRAFT 3 .;

:: U1009B ( N SUBNUM I .;
:: U1211B C N S ’ JBNUN I  I . ;
:: U1232 C N SUBNUM I . ;

:: U1324B I N SUBNUM I . ;

:: UABC [ N I . ;
UAF [ N I . ;

:: UBBC I N ] . ;
:: UG254 I N SUBNUM I . ;
: 1JG83 ÔC ( N SU B\’I )N! ] .

:: UGANDA [ N LOC NATICN I .;
U G A N D A N  1 10.1 NAT ION I .;

:: UNDERWAY I ADJ FLIGHT I .;
IINOETER\I ! NED C ADJ I

:: l!’ I f l F N T f l - 1 i~D [ 10.1 1 . ;

:: UNITS [ N PL I .;
:: VARIOUS C ADJ I . ;
:: V I C I N I T Y  [ N I .;

C-il



:: VIOLATED I VB TRANS PASTP PENETRATE I I VB TRANS TENSED PENETRATE I .;
:: WAS I BE COPULA TENSED 3 .;
:: WEATHER I N I .;
:: WERE [ BE COPULA TENSED I . ;
:: WEST ( ADVB DIR I I ADJ I .;-
:: WESTERN [ ADJ I .;
:: WESTWARD I ADVB DIR I .;
:: WHICH [ RELPRO PRO I .;
:: WOULD I MODAL I .;
:: X [ N L O C ] . ;

XB442 I N SUBNUM I . ;

:: X B 2 € 2  C N SUBNUM I .;
:: ZEILA [ N LOC I .;
END LEX

C-i 2
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Appendix 0 - MATRES II Grammar
(. SGRAM . 4TH -- TEST GRAMMAR FOR SENTENCES)

GRAMMAR DCL!
(. DECLARATIONS)

REG I STER SUBJ
REGISTER OBJ
REGISTER VGRG
REGISTER PASSIVE
REGISTER VHRG
REGISTER DPRG
REGISTER DPF
REGISTER HNRG
REGISTER NPRG
REGISTER SN PF
REGISTER NRC —

REGISTER PPRG
REG I STER PREPRG
REGISTER QPRG
REGISTER ARTRG
REGISTER NU NI R G
REGISTER VRG
REGISTER CPPG
REGISTER AGRG
REGISTER MONTH
REGISTER YEAR 

—

REGISTER REL
REG ISTER RELF
REGISTER RRF
REGISTER RR - 

-

REGISTER COMPL
LIST VMODS - 

-

LIST NUMLST
LIST PREMODS
LIST POSTMODS
LIST AUX
LIST ADVBLST
LIST PMODS
LIST DAY
LIST TP
LIST DCL
5 LABEL S
4 LABEL NP
3 LABEL DP
2 LABEL QP
2 LABEL NNODE
3 LABEL PP
1 LABEL P
4 LABEL VG
2 LABEL V

D-1 
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3 LABEL DATE

(. THE DECLARATIVE N ET N
S DCL!

:P SH R E LF GETR 1 = I !  TO Sj SUB J * DCL A D D L I S T  = >  ~CL/ S
PSH RRF GETR 1 = H

VGRG SENDR PASSIVE SE NOR VHRG SENDR VMODS SENU1L
TO S/VG * DCL ADDLIST = >  DCL/S

PSH RELF GETR RRF GETR + 0 = ! !
TO S/ * DCL ADDLIST = DCL/S

;;
:S DCL/S

:CAT I SCONJ I !! * DCL ADDLIST = >  DCL/CONJ
:JUM P DCL/DCL

S DCL/CONJ ‘ -

: PSH * [ PRESP 3 !! TO 5/SUBJ * DCL ADDLIST = >  DCL/S
:PSH TO NI’! * DCL ADDL IST = >  DCL/S , ,

,,
S DCL/DCL

:POP DCL , ,
; ;

(. THE SENTENCE NET)
: S S /

:PSH TO PP/ * VMODS A D D L I S T  =~ SI ,,
:PSH TO D/ 0 0 a PP NODE VMODS ADDLIST = >  S/ , ,
:CAT I A D VB TYME I !! * VMODS ADDL IST = S/PP
:JUMP S/PP

I’
S S/PP

:P SH TO NP! * SUBJ SETR = ‘ S/SUBJ , ,

S S/SUBJ
:PSH VM O D S SENDL TO VG/

* VGRG SET R PASSIVE RETR VHRG RETR VMODS RETL = ‘ S / V G  ,,
‘ I

:5 S/VG
:PSH PASSIVE GETR 1 = * “ BY” AND I! TO AG !

SUBJ GETR OBJ SETR * SUBJ SETR = ‘ S/OBJ , ,
:JUMP S/OBJ P A S S I V E  GETR 1 =

SUBJ GETR OBJ SETR 0 SUBJ SETR , ,
:P SII  P A S S I V E  GET R 0 = VHRG GETR [ TRANS I AND H

TO SNP! * OBJ SETR = >  S/OBJ
:J IJMF S/OBJ PASSIVE GETR 0 = ! ‘  , ,

,,
S S/OBJ

:PSH VMODS SENDL TO VM/ VNIODS RE TL S/S

U- 2
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: S S / S
POP SUBJ GE TR Y GR O GETR OBJ GETR CO%W L GE TR \ M O U S  S NOOF

(. THE NOUN PHRASE SUSN ET !
:S NP!

PSU TO SNP /  DPR G RET R PRE M OD S RE TL HNR G RETh = ‘ NP . - S\U

S N F / S N P
:PSH TO P OST MOD S/ POST MODS RETL N P / N P  , ,

S N P / N P
POP DP RG GE TR PRE M ODS HNR G CET R POSIMO DS NP NODE , ,

,,

(. THE S I M P L E  N O U N  PHRASE SUBNET )
:S  SNF /

: P S H  TO D P /  a DPR G SETR PRE M ODS RE TL I S N F F  SETR = ‘  SNU/DF , ,
JUMP S\F . - Vi’ , ,

, ,
:S SN F / D P

:PSH P R E N I O D S  SEN IJ L TO I-IN! * HNRG SETR P R EMO DS RETL I S\PF SEF R ~
: J U M P  S \ P / S N F ’  , ,

: S SNP/SNP
POP S\ I ’F  GETR 1 = I

DP RG GET R PRE M OD S 1-INRG GET R POSTM ODS NP NODE , ,

(. THE P ETE R ~I 1 N ER P H R A S E  SI IB NET )
S DPI

: P SH TO QP I  * Q PRG SETR 1 f l I ’F SETR = ‘

: .IUNII’ DP/QP ,

:5 DP / Q P
:CAT I ART I !! * ART RG SFTR 1 l ) P F SETR = ‘ PP/ART ,,

JUMP PP /ART

: S DP/ART
CAT [ l IN T I ! ! * PREMODS ADD LIST = \ DP . -’ART , ,

:J I I MP DF/P R E\1O E ) S , ,

S DP / P RFM O D S
PSH TO 1 ‘ I~~! Y T M I S T  P F T L  I O F F  SETR DP, ’Dr
GU lF PP ‘PP  ,

:S  P F / D P

U- -~
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:POP DPF GETR 1 = I t
QPRG GETR ARTRG GETR NUMLST DP NODE , ,

, ,

(. THE Q U A N T I F I E R  PHRASE SU SNET )
S QP/
:CAT [ QUINT I !! * 0 QP NODE QPRG S ETR = ,  QP/QP
:PS H TO 1/NUNI * NIJMRG S ETR => QP/NUM

:S QP !NIJNI
:WR D “ OF” !! NUMRG G ET R * QP NODE QPRG SETR = >  QP/Q P , ,

, ,
:S QP/QP

POP QPR G GETR
, ,

(. THE NUMBER SUBNET)
S 1/NUNI

:CAT [ NUMM OD I !! * NUM LST A D D L I S T  = 1/NIJ\ l ,,
:CAT I ADVB I !! * NU\ILST ADDL IST > 1INUM , ,  r l

:CAT C NUM I !! * NUMLST ADDLIST = 2/NIJM
;;
:S 2/NUM

JUMP 1/NUM * I NU NIM OD I * I ADVB I * I NUN -I I OR OR ! I
:WRD “ AND” !! * NUM LST AD U L I ST => 1/NUM ,,
:WRD “ TO” !! * NUM LST A D D L I S T  => 1/NUM
:POP NUMLST , ,

, ,

(. THE HEAD N OUN SU~ NE T)
: S HN/

:CAT I ADJ I I !  * PRE M O T) S .AD DL IS T = HN /
:CAT ( PRESP I !! * PR EMODS A D D L I S T  = -

‘ HN/
:CAT [ PASTP I I !  * PREMODS ADDLIST = MN!
:PSH * [ N 3 i i  TO N! * HNR G SETR = >  H N / N

S M N / N
:JUMP MN! * I ADJ I * ( PRESP I * [ PASTP I * I N I OR OR OR I!

HNRG GETR PREMODS ADDL IST
POP H N R G GETR

,,

(. THE NC~I lN S U B N E T )
:S N/

CAT I N I ! ! * NR C SETR = ‘ N / N  , ,
; ;

n -4
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S N/N
: P SH * OF” !! TO PP I  * PPRG SETR = >  N / P P  , ,
:JU ~tP N / P P  , ,

S N / P P
:POP NRC GETR PPRG GETR N ’N ODE NODE , ,

(. THE PREP P H RASE SU SN E T)
S PP/

PSH TO 1 - N J N I  * PM ODS A D D L I S T  = ‘ PP ,-’NUM
:CAT C A D N B  I * C D I R  I NOT I !  * PMOD S ADDLIST > P P / U N I T  , ,
:JUM P P P - - U N I T

S P P / N U M
:CAT C U N I T  I I !  * PNI OD S A D D L I S T  = >  P P 1’ U N I T  , ,

:S P P - U N I T
:CAT I PREP I ii * P R E P R G  SETR = >  P P / P R E t ~ P
:JUMP PPI’PREP *— 1 “ ENROUTE” H , ,

, ,
S P P / P R E P
:PSH PREPRG GETR [ TAME I i i  TO IF! a OBJ SETR ~~ PP /PP  , ,
:PSU TO D,- ’ * OBJ S ETR =~~ P p / p p  , ,
: PSH TO SN P /  * OBJ SETR = >  PP/PP

S PP/PP
:POP PMD D S P REP R G GETR OBJ GETP PP NODE , ,

, ,

(. THE P O S T - H E A D  M O D I F I E R  S U B N E T )
S POSTIV1ODS/

:P SH * I RPL P! ? O I ! I TO F - -’ a P OST \WI D S A D D L I S T  POST M ODS . ’P
: P S H * PRESP * I PI STP TRANS 3 OR * C AP i 3 OR

* I 1015 3 *4 1 1 PRESP 1 *#l PASTP T R A N S  I OR *4 1 I ADJ I OR AND OR I !
TO P R , - - * POS T MOD ~ A D D L I S T = >  F OSTMO DS /P

: PSH TO PP/  * P O STMODS A D D L I S T  =“ POSTMOPS/
JUMP P DST MO P S - r

, ,
: S POST \ 1ODS/P

POP POSTMO DS , ,

(. T H E RE JA T ~ Y E CL ,A1I ~~F SU E\ ’FT~
:5  F ’

:CAT I RENPRO 3 !! R F R O
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:S R/PRO
PSH 1 R E L F  SETR R E L F  SEND R TO DCL/

* REL SETR = ‘ R ’ R  , ,

:SR/R
:POP REL GETR

, ,

(. THE R E D U C E D  R E L A T I N E  CLAUSE SUBNET )
S RR/

PSH TO RIG’
* V G R G SETR PASSIVE RETR VHRG RETR VMODS RETL
=~ RR \ G  , ,

:S  RR/VG
:PSH 1 RRF SETR RRF SENOR VGRG SENOR PASSI\’E SENOR \ HRG SENOR VMOVS SENP-L

TO DCL .- * RR SETR = >  RR/RR , ,
, ,

S RR/RR
POP RR GETR

; ;

(. VERB GROUP SU E N E T  FOR REDUCED RELATI N E CLAUSE S)
: S RVG/

:CAT C A D VB EVIL I I! * ADVBLST ADDLIST =~~ RVG/ A DVB , ,
:CAT I 1018 ] !! * VMODS ADDLIST =~ R V G / A D \ ’ B
JUM P RVG/ADVB

-
~ S RVG/ADVB

:C AT [ P R E S P  I I !  * VHR G SETR =~ R V G / V H  , ,
CAT [ AD J  I * [ P.NSTP I *+ 1  “ BY” A N D  N OT I !

* VH R G SETR = R V G / V H
CAT [ PASTP 3 ! ! * VH FG SETR 1 P A S S I V E  SF TR = R V C - V H

; ;
: S RVG/VH

: POP AD VBLST AUX 0 VHRG GETR VG NODE , ,

(. THE VERB GROUP 5Ij B\F T ’~
S VG/

: PSM N’M ODS SEN O L TO AU/
AI J \  RETL ADV B LST RET L \ M O V S  R E TL ) \-‘C; AU X

:5 VG/ .-’Oi\
:CAT I COFUL .A 3 I I  * CPRG SEER = ‘ VG/COP , ,
CAT I BE I ! ! = VG/BE ,

: CAT [ VB I ! * VHRG SE TR =~~ \ G / \ H  ,

U- 6
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: CAT I AD ~’B EVIL j I !  * ADVBLST ADDLIST = VG/COP , ,
:CAT I ADVB I !! * VNIODS ADDLIST =‘ VG/COP
: CAT 1 i~DJ I CPRG GETR I LE I * [ PASTP 3 *+1 “ BY ” AN~ ~N D NOT I

* VHR G S ETR = >  VG/VH

S VG/BE
:CAT 1 ADVB EVAL I !! * ADVBLST ADDL IST =, VG/BE
:CAT I AD VB 1 !! VMODS ADDLIST = >  VG / BE
:CAT C PASTP I H * VHRG SETR 1 PASSIVE SETR = >  VC/ VH ,,

, ,
:S VG/VH

: POP ADVBLST A’JX CPRG GETR VH R G GE TR VG NODE , ,
, ,

(. THE A U X I L I A R Y  S U B N E T )
S AU!
:CAT I ADVB EVIL I I! * ADVBLST ADDLIST > AU! , ,
: CAT C A VIS I H * VM ODS A D D L I S T  = >  AU! ,,
:CAT [ MODAL I !! * AUX ADDLIST = >  AU/MDL ,,
JUMP AU/MDL

, ,
S AU/MDL

:CAT I AVIS EVAL I !! * ADVBLST ADDLIST = >  AU /M D L
:CAT I ADVB I I !  * ‘/MODS ADDLIST = >  AU!
:CAT ( HAVE 3 1! * AUX A DDLIST => AU/HAVE , ,

JUMP AU/PA STP
, ,

S AU/HAVE
: CAT [ ADVB EV IL I !! * ADVBLST ADDL IST = >  AU/HAVE , ,
: CAI I A DV B I H * VMODS A D D L I S T  =~ AU/HAVE , ,
:JUM P AU/PASTP * [ PASTP I !! , ,

, ,
: S AU/PASTP

:CAT C BE I I ! * AUX ADDLIST = >  A U / B E  , ,
: JUMP AU / AU , ,

:S A U / B E
:CAT I ADN’B EVAL I !! * ADVBLST ADDLIST = >  AU/BE ,,
:CAT I AD ’ B I !! * VMODS ADDLIST = >  AU/BE , ,
JUMP AU/AU * [ PRESP I I

: S AU/AU
:POP AUX

(. THE AGENT NET)

0-7 
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:S AC/
WR E) “ BY” I! = ‘ A C -  VI

S AC ,- DY
P SH  TO - \P/  * AGRG SETR -‘&C/AC

‘ p

:S AC/ AC
POP A GR G GET R

. . THE VMOI ’I ;  S U B N E r )
: S V M ’

J UMP NM VM * [ SCON .) I I I
PSU a-- I [ N I * [ RELPRO I ANIl I TO F - 

* N ’MOUS 1001.1ST ~ NM
PSH * I P R E S P  ] * [ P- \ S T P TR,-\NS I OR * [ NI l ) I OR

* [ AUN’B I *~~ 1 1 I’~~IOiI’ 3 a s  1 I P - \ ST I’  Ti-I - A N N  I OR as 1 [ -AU) I OR A \ I ~
OR * - 1 1 N I - AND
TO R R /  * VMODS IDOL I NT ~- ‘ INI \‘M

PS H TO NV * VMOIN, A D I ) L I  ST N M ;
CAT I AD N B DIR I ! ! * V M O I ) N  A U D I .  1ST ‘ N M !
PS U TO 0/ 0 0 * PP N O I I D  \ M O D S  A D D L I S T  = >
JUMP V NI , - IN I

‘ p
S VM/ VM

POE’ N NIOIN

‘ p

(. THE T IM 1 PHRA SE WUNF I )
S TP /

WR P ‘‘ r U E ”  ! I * TI’ ,-\I)UI, I ST r~ ‘I I’,- FIIU
: C A  [ lU l l ’  U V A I .  ] ! ! * TP 11101, 1 ST =~ Tl’/Afl\ ’D

JUMP T P / A I ’V U
‘ p
: S T P / I H E

CAT ( AD ) I I * TI’ IDOL I SI ’  T1’/AI)J ,
: j ii :-~u TE ’/AD J ,

;;
: S T P’ .\ U l

CAT [ N r I ME I ! * TI ’ ,\ I1PI . I NT - - ‘ ~ I’ ‘ I
CAT ( 4DI.~ 1 ! ! * TI ’ 10111. 1 ST T P - ’ I ’

S It’/l
: F A l  [ T A M E  L I X  I T  I I !  * TI’ ,AI . I I ) L  151 ’ I I’ I I ’  ,

S
: CAT [ N l I M P  3 ! I * TP -\11DI.I N-F ‘ TI’! iT ,

CAT 1 4 !) ! C ! ! * I I ’  11) 111, 1 N I  = \ TI’! IT

U - S 

~~~~~~~~~~~~~~~~~~~~~ ~
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:S TP/1T
“ A N D ”  ! I * TP A D D L I S T  = TP;-’~ ’’- . ,,

WIl D “ TO” I ! * TI’ A D D L I ’ r ~~ T P / C ON J  , ,
: J U . I P  TP, ’~;oNJ ,
Jll’sl i’ IF /I?

p p

S TP/CONJ
:CAT I N TYME 1 1 ! * TP ADDLIST = >  TP/TP ,,
:CAT I 4DIG 3 1! * TP A D D L I S T  TP!TP

, ,
S TP/TP
:POP TI’ , ,

‘ p

(. THE [\TE SNUNET
S El,’

: CAT 1BIG 3 H * D A Y  A D D . 1 S T  = ,  f l / P A I l , ,  - -
: C1AT j , D I G  1 !!  * V IA A D D L I S T  fl- .’ D/D ~~’ .t , ,
:\ ~I~D “ T HE” I I * DAY .A D D L I S T  = >  V/ART , ,

J U M P  DiART ,

S B /DA Y 1
CAT I I D I G  3 1 !  * DAY A D D L I S f  = >  D LII , ,
:CAT C 2DIG I I! * DAY A D D L I S T  = f l / D A Y  , ,  HJUM P fl /DAY

:S 0/ART
;CAT I ORD I !! * DAY : \DD L I ST  = >  fl/DAY

S 0/DAY
: CAT C AlL ) I I !  * MONTH SETR = 0 / M U

,,
: S 0/MO

: CIT [ 2DJG 3 ! ! * YEAR SETR =~ P ’ fl ,,
: CAT [ 4DJG I ! ! * N EAR SEER =~ ‘ U / L i  ,,
:JIJN1P 0/U

:S D / D
POP I’ll MONTH GETR ‘i F . - \F  GE TR DIlL \ O P D

— 
- 

EN DCF .-\MM A R

0- 0



__________________________________________________________________________________________ —“~~~“ -~~~~~ ——— —

Appendix E - Test Corpus
> , S I X  A U X I L I A R Y  A V I A T I O N  B-60 BUFF HEAVY BOMBERS FROM EABC RGT S 1 2 3 1B
AT MOGADISHU CONDUCTED FLIGHTS OVER THE ARABI AN SEA BETWEEN 0220 AND
0634Z ON 21 FEBRUARY.

>> THE PROBABLE FOUR EAFAF B-aU AIRCRA FT FROM XB442 WHICH CONDUCTED OPEPSATIONS
OVER THE NORTH INDIAN OCEAN ARE CURREN TLY ENROUTE HOMEBASE.

>> EIGHT E T H I O P I A N  A U X I L I A R Y  A V I A T I O N  N ORTHWEST BOMBER CORPS 8-60 BUFF
HEAVY BOMBERS FROM REGIMENT E 16 S1D AT MASSAWA ARE CURRENTLY ACTIVE
OVER THE GULF OF ADEN.

> , TWO B— 6O BUFF A AIRCRAFT FROM THE EAFA F NA F IONAL GUARD AUXILIARY 
-

‘

SURVEILLANCE AIR REGIME NT XB4 42 AT Z E I L A , ARE CURRENTLY ACTIVE OVER
THE NORTH IN O TAN OCEAN EAST OF KENYA.

> >  EIGHT UBBC B—G O FROM ENTEBBE, STAGING FROM GULU, CONDUCTED FLIGHT
OPERATIONS ALONG THE SUDANESE COAST.

> >  AT LEAST TEN U G A N D A N  AUXILIARY AVIATION HEAVY BOMBERS ARE CURRENTLY
ENROUTE TO THE RED SEA.

>> TWO INDIAN OCEAN FLEET A IR FORCE 8-60 BUFF A AIRCRAFT SUBORDINATE TO
NATIONAL GUARDS AUXILI AR Y SURVEILLANCE AIR REGIMENT AT NA IROBI ARE
CURRENTLY A C T I N E  OVER TH, NORTHERN INDIAN OCEAN IN AN AREA NORTHEAST OF
THE SEYCHELLES.

>> TWO EAFA F B- G O BUFF C AIRCRAFT SUBORDINATE TO THE N A T I O N A L  SURVEILLANCE
AIR RE G IME NT XB2 6 2 AT NAIROBI CONDUCTED A PROBABLE RECONNAISSANCE OF A
SOUTH A F R I C A N  TASK GROUP SOUTHEAST OF MALAGASY.

4 >> TEN UGANDAN CONTINENTAL AVIATION UBBC U1211B ETBF B-60’S DEPLOYED TO
GULU.

> >  THREE 8C254 B-61 LUFF 0 A I R C R A F T  CONDUCTED AN OPE N OCEAN M A R I T I A I L
RECONNAISSANCE NAVIGATIONAL TRAINING MISSION TO THE GENERAL AREA SOUTHEAST
OF THE LACCAD I VES ON 21 /22  F E B R U A R Y .

,> THE THREE BC254  BUFF D IA I R C R A F T  WHICH CONDUCTED AN OPEN OCEAN M A R I T I M E
RECONNAISSANCE NAV IGATIONAL TRAINING MISSION TO THE GENERAL AREA
SOUTHEAST OF THE LACCAD 1VE ISL ANDS , HAVE RETURNED TO UGANDA BY 0620Z.

>~ TWO B-60 BUFF C AIRCRAFT FROM NATIONAL SURVEILLANCE AIR REGT UG254
AT GIJLU , ARE CU RRENTLY OPERAT I NG IN THE AREA OF THE NYAN JA TASK GROUP
JUST EAST OF THE SEYCHELLES.

>> T1~O EAFAF MOMBASA-BASED KE843 B—GO BUFF C AIRCRAFT ARE PlN-~S I B L Y
CONDUCTING COI~~AND AND CONTROL OPERATIONS OVER THE ARABIAN SEA POSSIFLA ’
IN CONJUNCTION WITH A RETURNING DELTA-CL ASS SIJPMARINE .

P-i

L. _ _ _ _ _ _ _ _ _ _ _ _ _ _



THE TWO EAFAF MOMBASA— BASED KE 843 B-GO BUFF C AIRCRAFT WHICH WERE
r O s s I B L Y  C O N I ) U c I ! \ ( ;  CO MM AXIl  A NT )  CONTRO L O P E R A T I O N S  ON ER THE SO U THERN
A R A B I A N  S P A , I t - A VE RETURNEE )  TO THE A F R I C A N  I , A~~[1~1\S 5 BY 103 0Z.

TWO SOUTH ACk IC- A N SAFA F C ,AP D T OW N BASED SA 554 B-- G O BUFF D ARE P R E S E N T L Y
LOCATED OVER THE SOUTH ATLANTIC, POSSIBLY IN REAC TION TO TWO
N I G E R I A N  U N I T S  LOfl TE D EAST OF ST HELENA.
) ‘  THIS FLI GHT ACTIVITY WAS PRECEDED BY A WEATHER RECONNAISSANCE FLIGNT BY
ONE PRETOR iA BA SED 5P265 B— 80 BEACON TO THE CAPE VERD E I S L A N D S .

> ‘  THE S i X  SOU TH A F R I C A N  FLEET A I R  FORCE SR- 11 ACFT W H I C H  CON DUCTED A SL
A S S O C I A T E D  O P E R A T I O N S  OVER THE A R A B I A N  SEA D U R I N G  TU E P R E V I O U S  P E R I O D
HAVE R E T U R N E D  TO N O R M A l ,  O P E R A T I N G  AREAS.

>~ THE M I S S I O N  D E S T I N A T I O N  OF THESE A I R C R A F T  I S  U N D E T E R M I N E D  AT T H I S  T I M E .

A I R C ~~AFT C O N D U C T E D  O P E R A T I O N S  I N  AN A R E A  SOUTH OF M,~AL , 1G.-\SI .

> s  A I R C R A F T  -A LE A C T I V D  O V E R  THE N O R T I I F R N  I N D I A N  OCEAN , NORTH OF THE
S E Y C H E L L E  I SI ,AN DS . —

A I R C R A F T  ARE CURRIN I LY  C O N D U C T i N G  U N D E T E R M I N F O  O P E R A T I O N S  I N  AN AR T -A
SOUT HP A ST OF THE M ALDI V E I S L A N D S .

‘-
~ 

A I R C R A F T  CONDUCTED FLIGHT OPERI T IO ~ S OVER THE A R A B I A N  SEA BE 1’WEP\ U335
AND Z Z I U - .

) s  TWO P O S S I B L Y  FOUR 5- AFAF C A P P I O W N  BASED SA ( ’Z2 BUFF 0 A I R C R A F T , S T A G I N G
FROM P R E T O R I A , ARE ~‘VLFPN TLY OPERATING OVER THE ARABIA N SEA.

~~ TWO ARE CURRFNTLY ENROUTE RED SEA.

TWO ME DIUM BOMBERS FROM REGIMENT U 1~ l i D  AT CDLII IS ,~ L ‘N~~ 1 8E C O NDUCTE D
.1 R F C O N \ - \  I SN A N C E  FL ! ;HT OVER THE C O M B A T  A L P  

‘
~ BETWEEN 1 141~ -AN D 11 ~~~ :.

ACT Y W A S  P R I M A R I L Y  .15W IN N A T U R E .

~~ Thc ’ N A I R O B I  -BASED SI l -  T’t F000ER A I R C R A F T  ARE C U RRENTL Y ENROI1TE FIU\IDF-\ ,,F
AFTER CONDUCTIN G AN INT ELl I GENCE COLLECTION FLIGH T A L O N G  THE SEYCHFI .LE
I S L A N I  C H A I N .

~~ ThO N-\IRODI - F .ANF [) SR :‘i F~W flER AIRCRAFT ARRIVED IN THE V I C I N I T Y  OF I!OMFFAD ~
AFTER CO ND UCTING AN I N T E L L I G E N C E  COLLECTION FLIGHT ALONG THE SEYCIiE LL E
I SLANI ) CHA I N  U P  l W F F \  03 1 1 - 0 1 0  U’.

~ AT lE AST 4~’, POSS U SLY (IS , SAF AP B- ~ t) BUFF -AIRCRAFT REPRESENTIN G TilE
T H R E E  :;TIl--

~TEGI C REGINIFN ’rN IN TUE SA FA F ARE PI-IPSEN FLY LOCATED O\’ER THE
AR -A D ! -AN Si - N IN A PROBABLE S IML’IA TEO A IR—TO—SURFA CE EXE RCI SF I-\ \O l \ I NC
\ ‘ A R l C - l i N  S’ Vl Tr I  A F R I C A N  S~~o- -\ ’F I N  115.

FVO N - \ F \F CAPETUl~\ BASE !) SC1~~ B-~~fl StIFF C AIRC RAFT A RE CURRENTLY
O P E R A T !  -NC ~‘ N I R  r UE - t R A P !  AN SF-A .



‘~~~ALL -ACFT PROBABLY RETURN p TO NORMAL OPER A TI NG N L ’~~ \~ P A  i i i  ~~~.

>~ l’\~U ~A FAF C-\PFI ’U- .\  F \ : ‘~ -D SC4~~. F- r~0 ~~l~~E~~- C SIRCLA 1 Ol ’Ft - \ ‘- D
THE A L A F - l \ \  SE-’ IN PP-N \!-LF PF 0\\\)S., O .E ~l i’l’C’FT THE SF ) 1 -

-

~~ X - ~

~ AT LEAST -~N l U-L-\\IL -\\ AUNT l I A R N  A VI A T IO N B -~~i) D U F F  1 - 4 5  ~ - ‘  f~~ ‘~~ T ’ ~
INDI AN OC1:: \

~ DPTD~~F\ 0535 o~ :o: \ i i  F E I I W A R Y .

“ >  PRO SOUTH A FRI C A N ILFET -AIR FORCE S-\ l- -W B--~~U ~‘UFF -AIRLU PA
PRFSF\ 1 LI I1 EF’LOYI -L TO \l .V ’RI T IUt - , IFERE A L T I A  F IN IOSS~ F L F  ~U\l \ Z -~l ~~~~

‘

EQUI PMFV~ T E S T I  \G l—L ~ G U I .

~~ FIGHT U-\ F GOlD D\~ EP UG53 ~’C B ‘3 —E -)L ON A!R CR- \ ~, 0 0 5 5 1 F  ~~ A
FRO\I FSJF F p CONDUCTED A LOSS I BC E SM-ALl. SCALT~ ‘LX O\ ER PUP SlL~ F ,P- IJRA F
COMI’LF\ OUR INC THE EAR LY ~.‘ t2 HOHR .

~~‘ T UE -A I RCRA FT pR()B.-\l;~ A R~- F R \ ~ U FL- NOR’ -~-~i. CPHL-Afl’ - -W. 1. F ’~ ~ D 1 A O L
1 ioo:: nc~p ,

~ ) TWO ~-CA\S- k\ AUXILIA R Y -lvi \TIO\ UBBC 0- -~~3 DEAC ON M T -L iON POlL ENS F- -CO
REGIAWA T Dl 3 -0’ AT O L D  ( l 4  ~TZWE [1iO Lu~~lO! TO L \ F F : 1’ P ~~~ ~v ’ç 

- -

B E I R  i•F\ 0 15 -A\1 ~ 0 5 - . .

~~ CURR L\ILY , THREE .-\I WlTlo: -~ O. U1~~Z4t~ F- -~~3S A R E  t i  -~ i - L N  E N . L ~ J~ I: 1~~’

~~ L F.
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Append Ix F - Examp les of System Operation

EXAMPLE 1

*> >  TWO UGANDAN ACFT FROM REGIMENT A 313 AT ENTEBBE DEPLOYED TO GULU
*AT 0200Z ON 21 FEBRUARY. H
PARSE OUTPUT:
LIST OF:
I NODE: u S
I I LIST OF:

I I NODE: 2IPP
I I I I NODE: 4IDATE
I I I I I ~~N I L > >
I I I I I 392. . FEBRUARY

I I I I LI ST OF:
I I I I 372. . 21

I I I I I END LIST
1 1 1 1  EN D NODE
I I I I 352. . ON
I I I I L IST OF:
l i i i  END LI ST
I I I END NODE
I I I NODE: 2 I P P
I I I I LIS T OF:
I I I I I 332.. 02002
l i i i  END LIST
l 1 l 1 3 1 2 . . AT
I I I I  L I ST OF:
t I l l  END LI ST
I I I EN D NODE r

H I I I NODE: 2 I P P
I I I I NODE: 2 I N P
I I I I I LIST OF:
I I I I I END LIST
I I I I 1 NODE: 5 !NN O D
I I I I 1 1 <~ N I L >

-~ 1 l 1 I 1 1 2 9 2 . . G U L U
I l l I l  END N ODE
I I I I I LIST OF:
I I I I I END LIST
I I I I I < < N I L > >
I I I I END NODE
I I I I 272. .10
I I I I LI ST OF:
I I I I END LIST
I I  I EN D NODE
I I END LI ST
I I < < N I L ’ >
I I ( < N I L > )
I I NODE: 2IVG

F—I



I I I 232.. DEPLOYED
I I I <<NIL>>
I I I LIST OF:
I I  I END LIST
I I I  LIST OF:
I I I END LIST
I I END NODE
I I NODE: 2INP
I I I  LIST OF:
I I I I NODE: 2IPP
I I I I I NODE: 2 I N P
I I I I I I LIST OF:
1 1 1 1 1  I END LIST
I I I I I I NODE: 5INNO D
I I I I I I I <<NIL>>
I I I I I I I 2 1 2 . . ENTEB BE
I I I I I I END NODE
I I I I I I LIST OF:
I I I I  I I END LIST
I I I I I I <<NIL>>
1 1 1 1  I END NODE
I I I I 1 192.. AT
I I I I I LI ST OF:
1 1 1 1 1  END LIST
I I I I END NODE
I I I I NODE: 2 I P P
I I I I I NODE: 2 I N P
1 1 1 1  I I  LI ST OF:
I l l i l  I END LI ST
I I I I I I NODE: 5INNOD
I I I I I I I <<NiL >>
I I I I I I I 172..A313
I I I I I I E N D NODE
1 1 1 1  I I  LIST OF:
I I I I I I I NODE: 5 INN OD
I I I I I I I I <<N iL>>

F-2 
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I I 1 I 1 I I I 182.. REGIMENT
I I I I I I I E N D NODE
I I I I I I END LIST
I I I I I I << NIL>>
l i l t  I END NODE

I I I I 152.. FROM
I I I I I LIST OF:
I I I I I END LIST
I I I  I END NODE
I I I END LIST
I I I NODE: 5IWN OD —

I I I I << N IL~ >
I I I I 132. . ACFT
I I  I END NODE
I I I LIST OF:
I I I I 112. . UGANDAN
I I I END LIST
I I I NODE: 2IDP - —

I I I I LI ST OF: - 
-

I I I I I 92.. TWO . -
I I I I END LI ST
I I I I <<NIL> ’

I I I < < N I L , >
I I  I END NODE
I I END NODE
I END NODE
END LI ST
Event: DEPLOY
Object:

Equipmen t~ UGANDAN ACFT 
- 

-

National i ty= UGANDAN
Subordjnatlon FROM REGIMENT A3 13

• . . Staglngbase= AT ENTEBBE
. . .N u a b e r =  TWO
Destinatlon= TO GULU
Time= AT 02002
Date= ON 21 FEBRUARY
EVENT RECORD COMPLETE.
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EXAMPLE 2

*>>  THE ACFT WER E ENROUTE TO NA IROBI BETWEEN 02002 AND 04002
* ON 2 1 FEBRUARY 1965.
PARSE OUTPUT:
LIST OF:

I NODE: u S
I I LIST OF:
I I I NODE: 2IPP
I I I I NODE: 4IDATE
I I I I I 350.. 1965
I I I I I 330.. FEBRUARY
I I I I I LIST OF:
I I I I I I 310. . 21
I I I I I END LIST - -
I I I I END NODE
I I I I 290. . ON
I I I I LIST OF:
I I I I END LIST N
I I I  END N O DE
I I I NODE: 2 I P P
I I I I LIST OF:
I I I I I 270. . 0400Z
I I I I I 250.. AND
I I I I I 230. . 0200Z
I I END LIST
I I I 210.. BETWEEN 

- - -I I I I LIST OF:
I I I I END LI ST
I I I END NODE
I I I NODE: 2IPP
I I I I NODE: 2INP
I I I I I LIST OF:
I I I I I END LIST
I I I I I NODE: 5 INNOD-
I I I I I I < < N I L > >  -:

I I I I 1 I 190.. NA IROBI
I I I  I I  ENU NODE
I I I I I LIST OF:
I I I I I END LIST
I I 1 I I <<NIL>>
I I I I  END NODE
I I I I 170.. TO
I I I I L IST OF:
I I I I END LIST
I I I  END NODE
I I END LIST
I I <<N IL> )
I I <<NIL>>
I I NODE: 2 I V G
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I I I 150.. ENROIJTE
I I I 130.. WERE
I I I LIST OF:
I I I END LIST
I I I LIST OF:
I I I END LIST
I I END NODE
I I NODE: 2 I N P
I I I LIST OF:
I I I END L I S T
I I I NODE: SINNOD
I I I I <<NIL>>
I I I I 110. . ACFT
I I  I END NODE
I I I LIST OF:
I I I END LIST
I I I NODE: 2 11W
I I I I LIST OF:
I I I  I END LIST
I I I I 90. . THE
I I I I < < N i L > >
I I I  END NODE
I I END NODE
I END NODE
END LIST
Event: ENROUTE
Object:

Equipnient’~ ACFT
...Number=
Destination= TO NAIROBI
Tlme= BETWEEN 0200Z AND 04 0 0Z
Date= ON 21 FEBRUARY 1965
EVENT RECORD COMPLETE.
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EXAMPLE 3

* > >  THE TWO ACFT WERE ENROUTE TO NAIROBI ON RECONN A ISS ANCE.
PARSE OUTPUT:
LIST OF:
I NODE: 1IS
I I LIST OF:
I I I NODE: 2IPP
I I I I NODE: 2INP
I I I I I LIST OF:
I I I I I END LIST
I I I I I NODE: SINN CD
I I I I I I ~~NIL >>
I I I I I I 228 . . RECONNAISSANCE
1 1 1 1 1  E N D NODE
I I I I I L IST  OF:
I I I I I END LIST
I I I I I << NIL>>
1 1 1 1  END NODE
I I I I 208.. ON
I I I I L I S T OF:
I I I I END LIST
I I I END NODE
I I I NODE: 2 IPP
I I I I NODE: 2 I N P
I I I I I LIST OF:
I I I I I END LIST
I I I I I NODE: 5INNOD
I I I I I I << NIL>>
I I I I I I 188.. NA IROBI
I I I I I END NODE
I I I I I LIST OF:
I I I I I END LIST
I I I I I <<NIL>>
I I I I END NODE
I I I I 168.. TO
I I I I LIST OF:
I I I I END L I S T
I I I END NODE
I I END LIS T
I I <<NIL>>
I I <N IL~ >
I I NODE: 2 IVG
I I I 148.. ENROUTE
I I I 1~ 8.. WERE
I I I LIST OF:
I I I END LIST
I I I LIST OF:
I I I END LIS T
I I END NODE
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I I NODE: 2INP
I I I L I S T  OF:
I I END L I S T

I NODE: 5$
I I I I < < N i L >>
I I I I 108. . ACFT
I I I END N O D E
I I I LIST OF:
I I I END LIST
I I I NODE: 2IDP
I I I I LIST OF:
I I I I I 88. . TWO
I I I I END LIST
I I I I 68. . TH E
I I I < < N I L > >
I I I E N D NODE
I I E N D  NODE
I E N D  N ODE
END LIST
Event: E\R- - TE
Obje c t :

Equ lpm ent= AC FT
Nwnber= TWO

Miss lon= ON R E C O N N A I S S A N C E
Desti~~ tion~ TO NA IRO B I
EVENT RECORD COIIOLETE.
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Appendix G - MATRES II Operations

1.0 Introduction

These instructions apply only to the OSI PDP-1 1/45 runnIng under the standari O~~IRSX-1 10 system. On that system, the MATRES II files are stored under two UFDs:
[60,4] contains all programs and data except for the template file; this file and the ERL
compiler are stored under [60,5].

2.0 CompilIng the ERL Templates

The source for the templates is in the file [60,5]TEMPLATE.ERL. This file, like ali MATRES
II files, may be modified with any standard ditor. The compilation procedure is as fol-
lows (assuming that you are logged in under [60,5]):

If the SPTBOL program has not been installed:
MCR >INS [11 ,50]SPTBOL/TASK= ...SPT

Then,
M C R ’I E R L CMPL

The command file will do the rest. If any syntax errors are discovered , the offending¶ clause(s) will be printed on the console Two files will be created: TEMPLATE.INT , the
Output from Pass 1 , and TEMPLATE.4TH, the f in a l output , which will be input to MATRES.

3.0 Running the MATRES System

You should be logged in under  [60 ,4]. The procedure is:

If the FORTH program has not been installed:
MCR INS [60, 3]FORTH/TASK= ... 4TH/INC=25500

Then,
MCR >4TH

After Forth says hello,
— *FOR TH LOAD

*@MATRES

After “MATRES READY!” is printed, sentences may be entered, preceded by “) > “ and
terminated by a perIod. Sentences may span multiple lines, breaking at word boundaries.
Example:

* >> TWO UGANDAN ACFT FROM A3 13 AT ENTEBBE DEPLOYED TO
*GULU AT UDOOZ ON 2 1 FEBRUARY.
Event: DEPLOY
Objec t:
• .  .Equipment= UGANDAN ACFT
• . . Number = TWO

Subordinat ion = FROM A3 13
. . . Stagingbase= AT ENTEBBE
Destination= TO CULU
Timer AT 0200Z
Date r ON 21 FEBRUA PY

There are various debugging switches available to enable printout of Intermediate
results To set a switch, enter  “name 1SET” ; to reset it , enter  “name OSET” . The fol-
lowing switches exist currently:

L 
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DEBUG causes a printout of the lexical units as they are found by lexical processing,
followed by a trace of the parsing process. The state names are shown r~ Forth
format , as a number of characters followed by the first four cha.~acters rf  the
name.

PRTREE causes the parse tree to be printed out after a successful parse. The eL-
ments of a node and members of a list will be shown in reverse order from t h a t
input to the templates. The node names also are in ¶ ortl’ format.

P~ SW causes a trace of the unification process. For every term in the head of a
clause (and every term in a skeleton in the head, etc.), the corresponding gosi
term is printed.

PTRY causes a trr~~e of clause entries. Clause names are printed in Forth format , a n d
- - consist of a C” followed by a number. This will be the number of the clause iii

thE. original source file , start ing from zero. Fo~ ins tance, “C27” will be the 27th
clause from the top one in the TEMP LATE.E RL file.
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